
ADAA98 016 GENERAL ELECTRIC CO SYRACUSE N Y F/6 9/2
SELF-DIAGNOSING DESIGN TECHNIQUES.(U)
JUN 78 R W HECKELMAN, W W KNIGHT W 8 STRAUB F33615-77-C-1106

UNCLASSIFIED AFAL-TR-78-183 NL-lmlmlmmml
IEEEEEEEEIIEI
IIIIEEIIIIIIIE
IIEIIIIEEEIIIE
IIEEEEIIIIIIEE
E-EEEEElllE-

AFAL-TT--

SELF-DIAGNOSING DESIGN TECHNIQUES

General Electric Company
P.O. Box 4840

Syracuse, N. Y. 13221

. 4.

.November 1978

TECHNICAL REPORT AFAL-TR-78-183

Final Report for 15 June 1977 - 30 June 1978

Approved for public release; distribution unlimited.

DT1C

AIR FORCE AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES2'
Air Force Systems CommandA

Wright-Patterson Air Force Base, Ohio 45433

LD

81 4 21 080

NOTICE

When Government drawings, specifications, or other data are used for any pur-

pose other than in connection with a definitely related Government procurement
operation, the United States Government thereby incurs no responsibility nor any
obligation whatsoever; and the fact that the government may have formulated,
furnished, or in any way supplied the said drawings, specifications, or other
data, is not to be regarded by implication or otherwise as in any manner licen-
sing the holder or any other person or corporation, or conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This technical report has been reviewed and is approved for publication.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is

releasable to the National Technical Information Service (NTIS). At NTIS, it will

be available to the general public, including foreign nations.

oj.B. RAEINGS, ie USAF LViN ST JOHN, Chief

Project Engineer Design & Packaging Group
Microelectronics Branch

FOR THE CO-'fANDER.

Sj
STANLEY E. rAGNER, C tf
Microelec trnics Bra ch
Electronic Technology Division

MIf your address has changed, if you wish to be removed from our mailing list,

or if the addressee is no longer employed by your organization please notify
AFWL/AADE3, W-P AFB, OH 45433 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by se-
curity considerations, contractual obligations, or notice on a specific document.

SECURITY CLASSIFICATION OF THIS PAGE (rWhn Date iEnered)

SREPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFALTR-78-183'
TITLE (ard Subtitle) S. TP E OF REPORT & PERIOD COVERED

SELF-DIAGNOSING DESIGN /Fina Reprt.
TECHNIQUES, 6 ORG- REPORT.UMBER

74 AUTHOR(,) 6. CONTRACT Oa GRANT NIER(s)

R.W. Heckelmant W.W. Knight, NF33615 77C-1O6

W.W., Straub--___..

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK

General Electric Co.' AREA a WORK UNIT NUMBERS

P.O. Box 4840 FY1175-77-21337
Syracuse, N.Y. 13221

II. CO TROLLNG OFFIC NAME AND ADDPES 02 . . REPORT-VT...-
unite tates Air Force (A'w1-L/AADE) / - • JUNZ30I 978
AFSC Aeronautical Systems Division .-- .. NUMBER OF PAGES

Wright-Patterson AFB, Ohio 45433 161 -
14. MONITORING AGENCY NAME & ADDRESS(if different Irrom Controlling Office) IS. SECURITY CLASS. (of ffhfe report)

UNCLASSIFIED
1Sa. DECLASSIFICATION'DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Repor)

"Approved for public release; distribution unlimited".

17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20 it different itom Report)

16 SUPPLEMENTARY NOTES

1I. V'EY WORDS (Continue on reverse side if necessary and identify by block number

Self-Diagnosing, Fault Tolerant, Fly-By-Wire Flight Control,
Self -Checking, Redundancy, Coding, Replication Error Management,
LSI Fault Patterns,

20 AB RACT (Coninue on reverse aide It necesasry aind Identify by block number)

A study and analysis of architectures, functional partitioning, and module
and component features, required to achieve self-diagnosing microprogram-
mable capabilities in processors, is described. The results of the self-
diagnosing techniques study, which apply to large-scale integrated (LSI)
circuits, are summarized in a set of design guidelines. Application of these
guidelines to a selected baseline, a digital fly-by-wire aircraft flight control
system, has resulted in the design of a self-diagnosing, fault tolerant ___

DD I JAN7, 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Wh.. .et FeredI

- -71

r,(JURITY CLASSIFICATION OF THIS PAGEIW(l7I Date Enalord)

processor possessing I'failed o4 '" fault tolerance and a probability of failure
1 X 10 9 for a two-hour mission.

Triplication is employed throughOut the design because of the require-
ment to achieve correct operation after the detection of a second error.
Functional, complementary partitioning of the requirements leads to an
implementation that can be matched to highly integrated devices. A bit-slice
processor implements the application requirements, while the error proces-
sing and processor redundancy management is handled by a computer-on-
chip (COC) family of devices. Specially designed self-checking checkers
and partition interconnections devices provide comprehensive and extended
error protection and interlocked reconfiguration control with respect to both
consistent and inconsistent errors.

Performance of the self-diagnosing, fault tolerant processor (SDFTP)
is comparable to that of a simplex bit-slice processor. Throughput esti-
mates indicate that instruction execution rates satisfy the baseline applica-
tion requirements. Error recovery times depend on self-test diagnostic
run times for some second error resolution and are currently projected to be
less than 10 milliseconds.

Implementation of the SDFTP requires approximately 4.6 times as many
devices as the simplex equivalent processor and nearly 40% added parts
types, of which nearly all are LSI circuits.

A program plan to implement and demonstrate the self-diagnosing, fault
tolerant processor is included.

SECURITY CLASIrPICATIOW OF THIS PAGE(Uhea Data Entered)

FOREWORD

The effort, which this following report documents, defines approaches
for designing highly reliable airborne processors using, for the most part,
present off-the-shelf hardware. Designs are intimately described for
several special purpose chips to handle the voting -nd error handling task:!
of the fault tolerant design. This program achieved the design of an air-
borne processor targeted for flight control applications with a probability
of failure of less than 1 x 10- 9 in a two hour mission. Throughput is in
the vicinity of 300,000 to 400,000 operations per second. Error recovery
would require a maximum of 10 milliseconds. CPU instruction set R-chitecture
is that of a presently available processor so that very little additional
support software need be developed.

This report was submitted in October 1978.

Publication of this report does not constitute USAF approval of repo.-t
findings or conclusions, and has been accomplished only for the exchange
and stimulation of ideas.

ALcessiOr For

TABLE OF CONTENTS

Section Title Page

1. INTRODUCTION 1

A. GENERAL DESCRIPTION 1

B. APPLICATION SUMMARY 2

1. Definition of Baseline Processing Requirements . 2

C. DESIGN GUIDELINES 3

D. SDFTP DESIGN 5

II. CONCLUSIONS 12

III. SELF-DIAGNOSING FAULT TOLERANT PROCESSOR . . . 13

A. GENERAL DESIGN CONSIDERATION AND
OPERATION 13

B. PROCESSOR DESIGN VERIFICATION 18

C. INTERFACE MODULE DESIGN22

1. Self-Checking Checker Without Mask 22
2. Voter-Switch24

D. RRU OPERATION 27

1. Architecture Review 27
2. Error Response Operations 34
3. Self Test Operations 42

E. RRU DESIGN 43

1. Hardware Components43
2. Description of RRU Signals49
3. Maskable SCC Tree55

F. RRU PROCESSOR SOFTWARE56

1. Design 56
2. Progiam Size Estimates58
3. Error Response Timing Estimates 58
4. Self Test Timing EStimates 60

G. CUSTOM DEVICES61

1. Summary61
2. Self-Checking Checker Witnout Mask 62
3. Self-Checking Checker (S.C.C.) With Mask 65
4. Voter-Switch 66
5. RRU Clock Controller70
6. Microsequencer74

TABLE OF CONTENTS
(Continued)

Section Title Page

IV. SELF TEST 81

V. RELIABILITY ENHANCEMENT AND PREDICTION ... 82

A. INTRODUCTION 82

B. SDFTP RELIABILITY MODEL 83

C. FAILURE RATE CALCULATIONS 87

D. RELIABILITY ESTIMATES 88

VI. COMPARISON OF SDFTP AND SIMPLEX PROCESSORS 91

VII. PROGRAM PLAN94

REFERENCES 98

Appendix

I DEFINITION OF BASELINE PROCESSING
REQUIREMENTS 99

II DESIGN GUIDELINES137

vi

LIST OF ILLUSTRATIONS

Figure No. Title Page

I. Bit-Slice Microprocessor 7

2. Interface Interconnections 9

3. Processor (Less RRU)14

4. Triplex RRU15

5. Block Diagram SDFTP16

6. Partition Interface Interconnection (Voter and
Switch and Self-Checking Checkers)17

7. Simplex Prototype Processor Design19

8. Voter and Switch and Self-Checking Checkers22

9. Totally Self-Checking Checker (TSC) 23

10. S.C.C. Without Mask25

11. Scanning Register #126

12. Triplicated Voter and Switch 28

13. Processor System Overview 29

14. Reconfiguration Recovery Unit Overview 30

15. Functional Detail of Voter/Switches and SCC's32

16. Interpretation of SCC Error Signals33

17. System Error Maps35

18. Switch Fault Error Reporting 35

19. First Part of RRU Operational Flow Diagram36

20. Error Signal Order on RRU I/O Ports 38

21. Diagnostic Flow Diagram39

22. Reconfiguration and Masking Flow Diagrams40

23. Final Part of RRU Operational Flow Diagram41

24. Self-Test Diagram 44

25. RRU Off Line Self Tests 45

26. RRU On Line Self Tests (Voter Switch & Clock Controller) 4 6

27. RRU On Line Self Tests (SCC) 47

28. Block Diagram of RRU System48

vii

LIST OF ILLUSTRATIONS
(Continued)

Figure No. Title Piage

29. Microprocessor and Combination ROM and I/O Port
Interconnections for Baseline Components 50

30. Input Signals51

31. Output Signals 52

32. RRU Maskable S.C.C. Tree 54

33. S.C.C. With Mask57

34. RRU Program Size Estimates 58

35. Error Response Timing Estimates 59

36. Self Test Timing Estimates60

37. Totally Self-Checking Checker (TSC) 62

38. Self-Checking Checker (S.C.C.) Without Mask 63

39. Scanning Register Format64

40. S.C.C. Without Mask Pin Usage65

41. S.C.C. With Mask 67

42. S C.C. With Mask Pin Usage 68

43. Triplicated Voter and Switch 69

44. Voter and Switch Pin Requirements71

45. Single Channel RRU Clock Controller 72

46. RRU Clock Controller Pin Assignment 73

47. Microsequencer75

48. Microsequencer Control76

49. Tally Counter 77

50. Multiplexer, Microprocessor Register and
Incrementer78

51. Microsequencer Stack79

52. Simplex Processor Probability of Failure89

53. SDFTP Probability of Failure90

54. Proposed Schedule - Self Diagnosing Fault Tolerant
Processor Demonstrator97

V'iIii

I. INTRODUCTION

A. GENERAL DESCRIPTION

The Self-Diagnosing fault tolerant processor (SDFTP) demonst rates
that large scale integrated (LSI) circuit devices can be used to effectively
implement current and future military avionic digital system requirements.
In this way the predicted advantages of reduced size, weight and cost of
LSI implementations are realized. The design also shows that (omnmerciallv
available LSI devices can be used to implement a large percentage of the
processor. By supplementing these devices with a few special part types and
using self diagnosing and fault-tolerant techniques, a processor has been
designed with the required high fault tolerance and predicted reliability
required for airborn fly-by-wire flight control processor application. Many
of these special circuits should find use in other equipments having lower
fault tolerance and reliability requirements, to the extent that their utiliza-
tion could become widespread.

This high predicted reliability is achieved while taking into account
the modifications to the fault models of current digital circuits which highly
integrated devices require for high-confidence reliability predictions.

The design employs both dynamic and static redundancy in conjunction
with self-diagnosing design techniques to produce the necessary reliability
enhancement and fault-tolerance improvement of the simplex processor.
Although redundancy is employed as the primary means of achieving fault
tolerance, periodic self-testing is recommended for status assessment and
initial flight check-out. Because of this approach maintenance should be
processor directed using built in self-diagnoses.

Both bit -slice and monolithic microprocessors are used in a
complementary fashion that matches the device capabilities to the functional
division of the processor requirements. The division of labor between the
processors is derived, primarily, from the performance and reliability
requirements and the desire for a wide range of applicability. Assignment
of the application functions to the bit-slice processor and the management of the
fault tolerance requirements to the computer-on-the chip family of devices
produces a design that is well matched to its intended use.

This report begins with a summary of the baseline application studies,
which led to the selection of the fly-by-wire flight control application, and of
the design guidelines developed for the design of self-diagnosing processors
using LSI components. A summary of the self-diagnosing fault tolerant (SDFTI)
design concludes this Section. Section II present conclusions and recommendations.

Section III, Processor Design is a detailed description of the design
beginning with a general overview followed by a discussion of the bit-slice
processor and the computer-on-chip implementation of the Reconfiguration and
Recovery Unit. Section IV, Processor Self-Test, relates the self-testI_ __

requirements to some preliminary simulation results in terms of test program
size and coverage based on LSI device implementations. Reliability modeling
and failure analysis of the SI)FTP and the simplex processor are covered in
Section V, Reliability Enhancement and Prediction.

SDFTP and the simplex processor are compared in Section VI, and
Section VII discusses the plan for designing, building, and demonstrating a
self-diagnosing, fault-tolerant processor. The two appendices detail the
baseline requirements study and the design guidelines.

B. APPLICATION SUMMARY

Two airborne applications were selected as potential sources of
baseline requirements. The applications considered were the fly-by-wiro
flight control processor and the synthetic aperture ground map function of
an airborne multiniode radar signal processor. Both applications were
examined to determine the requirements, beginning with mission identification
,1nd functional analysis. The work led to the development of algorithm flow
followed by performance analysis of representative tasks and resource sizing,
in terms of memory, processor speed and complexity as measured by the
variety of operations and execution speed. These results are summarized in
Appendix I,

1. Definition of Baseline Processing Requirements

The flight-control application is considered first in Section A of
Appendix I since it represents a set of requirements that falls within the
capabilities of systems that can be configured in a single progranmiable
computer structure, and which can be implemented today using existing
LSI devices such as microprocessors and memories. It is estimated that a
high performance cont rol configured, fly-by wire aircraft would require less
than 16, 000 words of 16-bit wide memory and could be controlled by a
processor capable of executing instructions at a rate of 300 to 400 thousands
of operations per second (KOPS). Because of the safety requirements of this
application, quadruple redundancy coupled with software implemented
redundancy management leads to a sophisticated input output system that
connects the electronic flight control system to the aircraft control sensors
and actuators. The reconfiguration approach selected is desicred to achieve
"failed op-squared" fault tolerance for the electronics.

The second application, Synthetic Aperture Ground Map Processing
of a Multimode Radar (described in Appendix I), results in signal processor
requirements that are beyond the capability of current and near future single
conventional microprocessor designs. However, special programmable
pipeline processors and netted sets of microprocessors are believed capable
of achieving the performance required. As in many other radar signal
processing applications, the core signal processing function has the ability
to generate a doppler frequency analysis of the radar return. For this
ground-mapping mode of the multimode radar, a processing rate in excess of
20 x 106 complex multiplies is required in addition to a signal processing
operation rate in the 1-2 million instructions per second range. Compared
to the flight-control application, the multinmode memory requirements are
significantly larger and are estimated to fall in the 3.5 million bit range.

2

This storage is normally distributed throughout the signal processor and must
provide a high memory accessing rate capability, which i a function of the
specific radar mode and signal processor ,,, .tecture.

C. DESIGN GVLbiLLINES

The ef fects of architecture, functional parti, .onin-, and llodulE
and component features on nicroprogranmable self diagnosing capabilit es
of digitat processors were investigated. These results were then used to
create a set of design guidelines for designing self-diagnosing, fault -t olerani
processors for both monolithic and bit -slice processors. Appendix I1, Desig.n
Guidelines, covers the findings of tihe studv and describes the techniques
considered.

Application of the guidelines strongly influenced the design of the
SDFTP. One of the major conclusions is that architectural considerations
are of primary importance in the design of a self -diag'nosin, p'Ocessr.
pailicularly those making extensive use of lar-ge scale interated (LSI)
Circuits. A major factor in this conclusion is that fault models of these self-
diagnosing processors should include multiple erro)rs. Applving- this constraint
in the evaluation of checking techniques leads, in general, to the selection of
replication as the prefe red coding approach and for processors in narticular
Periodic testing is rejected as a primary approach because of its poor detection
of inconsistent errors, incompatibility with real-time requirenuents. uncertain
effectiveness of diag-nostic routines in accounting for oult iple error1s, and
difficulty in generating multiple error diagnostics.

Utilization of redundancy for self-diagnosis and fault tolerance leads
to an increase in the probability of failure and to the desirabilitv of enhancing
the reliability of the self-diagn(sing processor design. However, niost of the
redundancy techniques that are theoretically interesting apply only at the
component level and, if applied as static redundancy, are effectivye for short
times compared to their mean -time to failure. Consequently, bit-slice
processors are preferred over monolithic microprocessors)ecause of their
lower circuit complexity and greater treedom in partitioning. Technological
considerations dictate that redundancy be applied external to the device, at least
for the immediate future.

Partit ioning of the processor designs is based on hardware attributes.
fault error models, and type of diagnosis. Hardware attributes include partition
function, Structu'e regularity, size, speed and communication requirements.
Using these criteria, functional partitioning was determined to be the most
effective type. For a bit -slice processor the part it ions are: processor,
control, memory, input output and buses. Placement of the boundaries of the
partitions were strongly influenced by the breadth of communication required
among the partitions since the size of the interface circuitry was a direct
function of the number of interface signals.

The g-uideline summary for a fault tolerant, self-diagnosing bit-
slice microprocessor is presented in Table I . The bus recommendation
applies only to internal communication within the processor and memory and
does not account for noise. Memories can also be an exception to the general
recommendation of redundancv for self-diagnosing protection. For tiecdiuni

3

o >

o H 0 ~00
F-4)

0l)

Hi 00 C

Cf))
w H P

0l

S0 >

C) z
~0- rz~- --

1-4 0

z Z
04

u a4

00

P4 0

L)C) :

0 A

0) 0l 0

0 A
__C4 0) 0 *

- - -

to large-sized memories conventional coding techniques are efficient
and effective. Specifically, a single error correcting-double error detecting
code with self-checking implementation of the encoders and decoders is
recommended.

D. SDFTP DESIGN

The SDFTP design is a synergistic combination of commercially
available bit-slice microprocessors and computer-on-chip family of devices.
It can be the archtvpe for a range of microprocessor-based systems, which
meet high reliability military standards, using LSI devices. It employs self-
diagnosing techniques, redundancy, and deferred maintenance to achieve a high
level of fault tolerance - i.e., tolerate two faults with correct operation after
the second fault. The design is developed according to a top-level functional
partitioning of the requirements into two sets. They are the application set
and the fault tolerant set. The application set is implemented by a replicated
bit-slice mnicroprocessor that handles the execution processes and communicates
with the outside world.

The second set is concerned with the detection of errors and the
management of the resources to achieve the required level of fault tolerance.
It is implemented with a combination of special custom-designed devices and
a computer-on-chip family of devices. This combination of devices performs
the five functions of fault tolerance:

1) error detection
2) error location
3) failed function substitution
4) reconfiguration
5) recovery

This distribution of resources follows the Design Guidelines developed
in the beginning of this program (See Appendix H1 Design Guidelines). It is
a reflection of the observation that architecture is the most important factor
in the design of a self-diagnosing system.

In highly reliable systems, such as this flight-control application,
partitioning also ranks high because of the trade-off that must be achieved
between access, partition failure rate, and communication path width.
Functional partitioning of the bit slice microprocessor resulted in:

1) generality of application through microprogrammability

2) performance sufficient to satisfy the flight -control application

3) partition failure rates that were sufficiently low that
replication could achieve the high reliability requirements
of flight-control applications.

4) partition interfaces that had reasonable hardware coupling
such that the necessary interface devices had relatively
low failure rates in comparison with those of its partition

The special, custom devices were instrumental in achieving this
last result. They are of a complexity, structure, and size that conventional

5

tools can be effectively used to analyze their properties and have failure rates
that are small compared to those of the partitions. They incorporate the ideas
needed for effective testability through the incorporation of scanning registers
and low level combinatorial networks between these registers.

Both the bit -slice microprocessor and the conmputer-on-chip (COC) are
triplicated for five reasons:

1) Three copies of a function are needed, at a minimuni, if
"failed op 2 '" fault tolerance is needed.

2) It was found that triplication provided sufficient reliability
enhancement for the short missions, so that a probability
of failure of less than 1 x 10-9 has been predicted.

3) Triplication is next to the cheapest of the single error
codes that can be used to reliably detect the multiple
bit errors exhibited by LSI devices.

4) Totally self-checking checkers tTSC's) can be designed and
applied in such a way that any illegal input code (nonidentical
triad of signals) as well as any checker failure can be detected.
This extends the protection boundary of the bit-slice
processor to the input buffers of the computer-on-chip.

5) By employing a triplicated cascade of these totally self-
checking checkers in a tree structure, a malfunction
transparent error collection network can be implemented.
This network transforms the multiple self-checking checker
outputs to a single signal that can interrupt the processing
in the bit-slice processors and can alert the computer-on-
chip that an error has been detected in the bit -slice processors.

A single string version of the SDFTP is shown in Fig-lure 1. The
bit -slice processor has been divided into three functional part it ions resulting
in three internal interfaces and one output (memory) interface. Each inter-
face includes a pair of self-checking checkers (SCC) with triple -encoded outputs
connected to the COC input buffers and the SCC tree. When an error occurs,
the COC is interrupted by the output of the SCC tree and COC reads in the
error information from the interfaces through the COG Input Buffer. Using
this information the COC locates the error by interface and device and
determines whether reconfiguration of the bit -slice processor is required.
If it is, the COC sends a reconfiguration command to the appropriate bit -slice
processor voter-switches located at each interface, by means of its Output
Buffer. After reconfiguration has been completed, the COC initiates
recovery on the bit-slice processor by interrupting it and supplying it with
an interrupt vector, which, in most instances, is the address of the last
roll-back point of the application process in execution at the time of the
interrupt. If reconfiguration is not required after locating the error, the
COC initiates the recovery process.

In both cases the COC saves the error information and updates its
error history and SDFTP configuration status. This information can be made
available during flight for status assessment and, when not in flight-control
use, in computer-aided maintenance. This leads to improved repair and
higher processor availability.

6

CAF

cn ~ -

F--F

44 [-4

4-(4

P4 U
>0

When the COC is not processing error reports, it performs self-
test, reads out data to a status display, or exercises the SDFTP to determine

if the error response system is operational.

Each interface between the bit-slice processor partitions consists
of a fixed interconnection of devices that perform the following functions.

Funct ion Device

1) Check Partition Output (Partition) Output SCC

2) Reconfigure Interface & Voter-Switch
Perform Failed Function
Substitution

3) Check Voter-Switch (Partition) Input SCC
Output

interface interconnections are shown in Figure 2. Each inter-
face has an outpuL and input SCC function. The output SCC fmction is imple-
mented by special custom devices, which perform the totally self-checking
checker function by pairs of signals on the three partition outputs (COPY 1,
COPY 2, COPY 3), and have three code outputs. The device also snapshots
each triple input microcycle of the bit-slice processor. These inputs and the
three TSC's can be read out to the COC on command. The three TSC outputs
are also connected to the SCC trees shown in Figure 1.

The input SCC device is identical to the output SCC. It receives inputs
from the Voter-Switch device. These Voter-Switch triple inputs are checked in
pairs by connecting the three combinations of signals to be checked to the
inputs of the three TSC's. The outputs of the TSC are also connected to both
the COC input buffers and the SCC trees. Snapshots of the Voter-Switch outputs
are also captured every microcycle and can be read out on command from the
COC.

Reconfiguration and failed function substitution are the functions
performed by the Voter-Switch. Each triple of input bits of the partition word
can either be voted, or one of the three bits can be connected to the output
by a three -way switch. The output can be controlled by the COC by sending
a command that selects either the voter or the switch. If the switch connection
is elected, the command selects one of the three positions of the switch so that
the selected Voter-Switch input is connected to the output.

Two other special devices have been defined to make the fault
tolerance more effective and efficient. They are the SCC With Mask and the
Clock Controller. The SCC With Mask is used in the SCC tree. It has two
features that distinguish it from the SCC Without Mask. They are a wider
input capability (24 bits versus 16 bits) and an input masking capability. This
mask capability permits an input to be blocked so that its signal does not
contribute to the output of the device. It is used to prevent a faulted device
from causing interrupts after it has failed.

The clock controller is used with the COC device to inhibit inad-
vertent reconfiguration af the bit-slice processor. This protection is imple-
mented by interlocking the reconfiguration command clock usin, redundancy
and key codes.

8

PAR[T ITION&PAwimN

TO TO

IN PUT INPUT
BUFFER BUFFER

TREE TRFE

F ROM
OUTPUT BUFFER

Figure 2. Interface Interconnections

9

The last special circuit is the microsequencer that replaces six
devices in the microsequencer partition. Since the SI)FTP design replicates
this partition three times, the savings are tripled. In addition to these
special considerations, the device has general appeal since it is believed
to be a better match, to most of the applications that are likely to be encountered
in dedicated military applications, than presently available microsequencer
devices.

These devices and techniques result in a design of greatly improved
reliability compared to the simplex processor. The SDFTP reliability is
calculated to be four to five orders of magnitude better than the simplex
processor for self-test coverage in the range of 0.9 to 1.0. These results
are based on detailed models of the SDFTP, which have been conservatively
established. The associated failure rates that were used in the model were
computed using military handbook values or procedures. Where necessary,
as is the case for custom devices and more complex commercially-available
levices, projections of the failure rates were developed. These projections
were based on an extrapolation of the complexity weights of the failure rate
equations. For an assumed self-test coverage factor of .95, the probability
of failure was determined to be Less than 1 ,: 10 - 9 for a three-hour mission.

Thus, compared to the simplex processor design, the SDFTP is
significantly superior for high fault-tolerant and high -reliability applications
with short mission time, such as the fly-by-wire electronic flight control
processor. The SDFTP design can tolerate two faults and still provide

undegraded operation. while the simlplex processor has no tolerance at all.
The testability improvement has not been demonstrated, but should also be
much superior to the simplex design due to the partitioning and the insertion
of the scanning registers Hence, the repair rate and availability should be
much improved, since the design is self diagnosing and retains a run time
history.

Another of the major improvements should be in the quality of the
output be ause of the tolerance of the design to inconsistent errors. Transients
should, in general, be masked until the occurrence of a second fault in a
device. The value of this ii ,proveinent is difficult to quantify but available
data suggest that inconsistent errors can have frequencies of occurrence that
are 10 times that of the solid errors.

Performance of this SI)FTP in terms of execution rate and through-
put closely parallels that of the simplex processor. The difference is believed
to be sufficiently small so that it is negligible. Loss of throughput due to the
processing of detected error is between 5 to 10 milliseconds per detected
error with the average closer to five. This is due to the low probability of
a second error in the samie interface device.

The price for this improvement is, of course, an increase in
physical resources. The SDFTP requires about 210 devices, which is about
4.6 times the number of devices needed to implement a simplex design.
Most of the increase is due to the triplication requirement but the difference
between the 4.6 factor of the SDFTP and triplication, 1.6, is a measure of
the efficiency of the self-diagnosing self-checking checker and the dynamic

10

redundancy control. The parts type comparison shows that eight additional
devices are required, most of which are of the LSI variety. Four of these
are special custom designs. At the cost of adding one additional device the
total parts count can be reduced to about 195 devices by employing the
microsequencer custom device.

For this commitment, the advantages of a very reliable, fault-
tolerant, self-diagnosing LSI implemented design can be realized. Increasing
the number of LSI devices and the degree of integration of the devices decreases
the size, weight, and ultimately the cost. This approach enhances these
advantages while accounting for the likelihood of LSI induced multiple-bit
errors.

11

II. CONCLUSIONS

A two fault tolerant, self-diagnosing, highly reliable microprocessor,
capable of providing modest throughput,has been designed using design guide-
lines based on LSI devices. This microprocessor's execution speed, fault
tolerance, and short mission reliability more than exceeds the selected fly-by-
wire electronic flight control processor baseline requirements. The guidelines
have yielded a design that tolerates the multiple bit error patterns that can ac-
company LSI device operation. Execution of the design has reinforced the design
guideline conclusions: to wit, that architectural considerations are of primary
importance in the design of a self-diagnosing microprocessor. Standardization
of the "optimized" functional partition's interfaces has permitted the definition
of just two custom LSI interface devices that implement the totally self-checking
checkers and the Voter-Switch devices for all of the partition interfaces. This
implementation has resulted in an interface implementation that has sufficiently
high reliability that it does not appreciably degrade the partition reliability.

Top-level functional decomposition of the total requirements has permitted
a bit-slice processor implementation of the application requirements using
commercially available devices. An optional custom LSI circuit, which de-
creases the total parts count of the SDFTP by 15, has been defined. Execution
of the other top-level functions by a computer-on-chip implementation results
in error recovery processing times of the order of 5-10 milliseconds. rhese
functions include the error vector pattern analysis for fault location and error
management for reconfiguration and recovery. The average execution time should
be in the 5-7 millisecond range, since the longer times correspond to the double
error in the same interface design, which has a relatively low probability.

This SDFTP requires a commitment of about 4.6 times the simplex parts
count. For some applications this may be too expensive, and other designs
should be considered if the fault tolerance and/or reliability requirements
are not as severe as in this application. Single fault tolerance appears to have
appreciably lower parts count while retaining most of the testability features
of the more tolerant design .

12

III. SELF-DIAGNOSING FAULT TOLERANT PROCESSOR

A. GENERAL DESIGN CONSIDERATION AND OPERATION

The Self-Diagnosing Fault Tolerant Processor (SDFTP) design
consists of triplicated structures. A triplicated bit-slice microprocessor,
as shown in Figure 3, executes the flight control program while a triplicated
monolithic microprocessor manages the bit-slice microprocessor's redundancy
(see Figure 4). This Reconfiguration and Recovery Unit processes the error
reports generated by the bit-slice processor checkers to determine how the bit-
slice processor should be configured and the sequence of programs that the bit-
slice processor should execute to return to normal processing.

Basically, a bit-slice processor was selected for the flight control
processor because (1) it provided a better match to the throughput requirements
of the flight control application, and (2) its lower level of integration permits
smaller redundant structures to be implemented. The second attribute per-
mits lower failure rate structures to be replicated, resulting in significantly
more reliable designs for short missions. These smaller structures have
been selected according to the guidelines presented in Appendix II. Accordingly,
the bit-slice processor architecture was divided into three parts corresponding
to the three functions of the processor hardware. See Figure 5. These
partitions are the microsequencer, the control store-pipeline register, and
the processor array, which includes the microprocessor bit slices. As shown
in Figure 1, there are three internal and three external partition interfaces.
All of the internal interfaces and the processor array-memory external inter-
face include Voter-Switch devices for changing the interconnect ions between the
pairs of partitions. Included in each of these interfaces is a pair of checkers
for checking the output and input of the partitions involved in each partition
as shown in Figure 6.

It is these checkers that detect any partition output errors and
Voter-Switch errors at each interface. In addition, these checkers possess
the very significant feature that they can detect their own errors. These self-
checking checkers (S.C.C.) also extend the boundary of protection from the
partitions and Voter-Switches to the periphery of the checkers. Each of the
checkers receives an input from each of the copies of the partition or the
Voter-Switch and develop an error signal corresponding to a check of each
pair of signals. Since there are three possible combinations, each S.C.C.
has three outputs corresponding to these three pairs of signals.

These S.C.C. error signals are used to alert the RRU that an error
has been detected, and to locate the partition,Voter Switch or S.C.C. that has
the error. Each of the Maskable S.C. C. 's shown in Figure 4 combines all
of the error outputs from the bit-slice microprocessor S.C.C.'s and produces
a dual-rail signal that interrupts its associated RRU computer. The interrupt
causes each RRU computer to begin its diagnostic program to locate the error.

13

cn

-iTU)
I F

140

15

7 L
- -

4

7.

_____ - *f.

H

~I)

.7 -~

Zr.
A

z

7-

I -

r~' r. ZL

16

)tlr't k,:S
F F 3 C I .

\' IT: I S I T(f
• ,i G..TES

G I; PIN

Figure 6 Partition Interface Interconnection
(\'oter and Switch and Self -Checkin- Checkers)

Simultaneously, the S.C.C. dual-rail signal interrupts the bit-slice processor
clocks and prevents the error signal from propagating beyond the partition
in which it originated. With the bit-slice processors stopped, the RRU's
have time to examine all of the bit-slice processor's S.C.C. output signals,
without concern that they might change. By reading the contents of one of
the three snapshot registers in the S.C.C., each RRU computer can determine
the source of the error and whether reconfiguration of the bit slice processors
i,< required. Depending on the status of the SDFTP the RRU may read all ,or
onlv a portion of the contents of the snapshot register. In some cases. the1
error vector associated with each S.C.C. may be sufficient. In other cases,
the entire snapshot may be read out, including the current S.C.C. input vectors
and the immediately preceding microcycle input vectors. By comparing these
vectors, the failed partition or device can be located. In some second error
situations, the comparison may require that a self-test program be run, in
which case the comparison includes a predetermined value that is known to he
correct . If the snapshot values differ from the precomputed value, their source
is inferred to have failed.

Combining this information with he stored status of the SDFTP, the
RRU computers determine the best configuration for the SDFTP and, if it is
not the current one. determine the commands that must be issued to the
Voter-Switches to produce this configuration. Each RRU controls one of three
sets of voters and switches in each Voter-Switch device. By issuing the proper
command, the RRU computer can select a configuration of one of three channels
in each Voter-Switch. One of the commands selects a voter that produces the
majority function of three inputs, corresponding to some bit of the interface
data. The other three commands select one of three switches. Each switch
connects one of its three inputs to an output for each bit of the interface signal.

17

The recommended mode of operation is to use the voter through the
occurrence of the second error in the samte partition or voter switch in)rder
to retain the masking capabilitv otf the voter foir as long as possible. Hence,
the operating algorithm assumes that the first error is an inconsistent one,
since the expected frequency is considerably higher than that for consistent
(solid) faults: it also assumes that the error will no recur when the program
is rolled back to the last roll-back point. Solid errors of course will be
detected a gain at the same p)oint in the)rtoram and the system will then
be reconfig-ured usin, the swite 1,) se,elct n input signal Each channel
will use a different swiich so h.ha the outputs are independent insolar as
possible. The failed channel will have to use one of the remaining two
channels that are still good.

After an error has been cunfirmned as being consistent, the Maskable
S.C.C. 's are modified so that the S.C.C. output producing the error is
rendered ineffective in controlling the RRU computer and clock interrupt
signals. This is achieved by allowing the RRU computers to generate a mask
that blocks out only the signal inputs produced by the error to the Maskable
S.C.C. 's.

Once reconfiguratioP is completed. recovery is initiated. For all
of the first errors in a device)r partition, recovery consists of turning the bit-
slice processor clocks on and vect oring the bit -slice processors to the last
rollback point in the executing task. The same procedure is followed for all
second faults that do not occur in the same device or partition. However.
when the error occurs in the same partition or the same part of the Voter-
Switch, the recovery process requires the execution of a self4est program to
identify which of two partitions is faulted. If the self-test program does not
result in the detect ion of an error, the bit-slice processor automatically falls
through the last roll-back point. If another error located in the same place
is detected, the SDFTP is reconligured and, then, the bit-slice processors are
vectored hack to) tht last roill -Iack point bv the RRU computers.

When ile i{iI conput ri's a i'e not processing bit -slice processor
S.C.C 1rr r)ort1. thev :re executing self-test and cross -checking each
ither . it the H H Mi ski bh, . .(. tlis, the associated RRU computer
-WA itChes t nio ')f tin' ()htlir w, NI-,iskahle S.C.C. inputs. In) some instances,
th ., ,.Iil ho. h l'n t 'ect (u Ind lik H H must rec()nffi ur itself just as it must when
an IHII, cmlpn lpul, Iit .I 1',) rex 'itt niltdx e rtent changing of the Voter-Sw itch
('onmoands. the shift clhwks asstwtiat ed with these commands are interlocked
bx a Clock Contr)ller de vice thai requirtes a key, (code word) and or the
majority of the RRIlr computers ,) command a clock signal.

1. PROCESSOR DESIGN VERIFICATION

The bit -slice processor design used in the SDFTP was verified via
the implementation and testing of a prototvpe. This simplex prototype
processor design included one copv of the microsequencer, control store-
pipeline register, and processor arrav partitions, as shown in Figure 7,
Here, the demarcation of the partition boundaries are the dotted lines. The
processor has an instruction repertoire of over 100 instructions, listed in
Table 11. Combining a one microsecond cycle time memory with the simplex
processor yields a computer that (can execute the flight control programs
within the hard deadlines. For tyvpical program mixes, the processing rate is
300,000 - 500,000 operations per second,

18

pljI SS~)j- AFUMAY PARTIll)N

,' ma.

COICHUSLREPARITINCL AITO ~ 4

L ---- - A I

* ' .q .t.
. .

l .4 .

::21 Lamit11
So,3 ' ' o

YPART 1 1JN

t Ii . ..

so- A. B. 21

191. 1 . _ _IAL

PROCE s coa AIR l N,

00l T M.-PL x -1

'aLI4

*~,,9..~a'~aID

59af d '
a~~~~ ao- 0o..

30 . ?ct?

Ii

ovI L -a. ;t , -rf

'PrRl - Vr tv t Pr c s o lh-p .1

TABLE 11

ALPHABETICAL LISTING OF MCP-701A INSTRUCTIONS

RZTN Petturn (rein Sibrotin 4 2 tX X1.
1; H "I uturn (fr i Interroupt lioutine 4)2x\X5.

SillI) Sotsract tiuie fromn Program Memory I 54 XX 3.0
s IlD Sutract 1uhtep from Sc ra(ctipad Memory 2 COXX 2,5
S RS P Set scratvil)pud Word BIts Spcified 2 74XX 1.7 a
S BC Skitract Pt, 'ramn metootv Word fron lilt I 52 XX . 2 0
SIMS Suhtract S4,iatchpaI Memiorv Word from CUt 2 Pt XX 1, 5
SIE Skip if I'rogrnoi Memory Word 1is ua to II IXX2
SIG Skip If lProgrami Me(mory Word is Greater than I'll I .A XX 2.0(2

SIt- Skip If Prtwrani Memiory Word is lesthan tiR I 62XX 2.0 2.-

SUM i St Indicator 0I vft It(te) - Immediate 1 I1)XX I 2
SI) set inkiicator (Bigh tiByte) - Immediate 4 11.: X .25

SISE Skip If Scratchpad Memory Word is Equal to lilt '- JMXX I 7 5 2.0
ShiSG Skip If Scratchpad Me.mory Word is Greater than ull A\ I .JA f)
SISI. Skitp If Scratchpad Memory Word is Lesthan ull 2 C X X 1. 75
S91,11 Skip On Indicator (Left Byte) - Immediate 4 1I XX 1.2) .l
SKI? Skipon Ixvive Ready 1:4x\ 1.7 ", * -21

SKll 1 SkIi On Indicator (Right Byvt() - Immediate I c vX 1.25 i
SKSPl Skip Onl Scratchpad Word tt Specified .t ?t c 2. 0 2,

i17 Shift U? Lo~t - Enter Zeros 2 Ze)\ it

S11,11) Shift Iootdc left - Finter Zeros .1 14 xI .
S 1l7,x Sit tDolite I t-ft fly XC - Enter zeros 2, 1. X1

sl Shif t RijUht (irutar I I. 'I',

SICf) Shift 0,11tile INoIht Circular 4 2~ 1I . 2
SR'S Shift CR Ilui lIetSit, 11 21 X I .
51(5Q,1) Shift IDoublve itilht. - Repeal Sign 2 . X I.
SI(SX stofl D~ouble Itih 1) CBeetSgn40

517 Shift CIliglit -Enter Zeros 4 X I .
Sitz) Shift Double Right - nter Zeros 7x 7X I.2

~Insruction E---------- \ii

Mneonic lnst riiition ttescription 1-or'llI t 0 pcI 'ate 111111.

ST AS Store XA (it S cratOhtiad Meimory 2 ~AOXX 1. 75

ST BPS Store X11 in Scratchpad Memnory 2 AIXX 17
STCS Store XC in) Scr-itc t5 ad Memory 2 A8X I XT
5') S Store f~owtde in Sc ra hpadt Memnry 2 9(XX 3.
S11.5 Sore Hf? in Sc raichpat Memnry 1 9ltX.X I .75
sTru Sote till in Programn Memory I 4C:XX .1.

STUS Store 1111 in Scratchpad Memory 2 I4.xx 1. 71
TU Transfer S11 ito tlt .1 13N N I . 2

T us Tr ans ferr IlT to Sit 4 14YX 12,
XCB F Vt- tciange UIT and Xl) 4 1III

XIJC Excoange UlR and XC 4 IZX I

X M. Exchange C R Ind 1,11 4 M. Xx .T
ZRD Zero Double (Ilt and LII) 4 ISxx 1

20

TABLE HI - (Continued)

Instruct ion t.'

Milneioinic Iistruction ix.scrilioonj 1orinat (.icbole -
AILSI1) Absolute value of Double itegister 4 IA~XX 1. !

I SI' Absolutce VaIle of III * 4 [''XX I 2', - I 1: I
A VIF Add to XII ()light llte) - Immediate 4 CDXI 2

AD1113 Adod to X11 (Rlight lyte) - Immediate 4 OCXX 1 25

1) 13C Add to ID (Righit 13ye) - Imimediate 4IDX
U)PIif Add to 'it ? itigit DB~iv - Immediate 4 MIXX I.2

APP Add Double fromt Program Memory soxI
A DDS Add I touble froi in Scratchpajd Memory 2 IICXX .5

A I)MS Addt Double to Scratchpad Memory 2 WAIX 1j 25

A DUI. Add to t.'ll from t'roiyrain Miviltory I 4EXX2)

A Nt*S Aid to I'll fiio Scratetipadt Memory 2 A (X X 1.5

A !4 Add IT to So tatciitiao Miemory 2 ID)Xx
C kSl (bClar Si'ratciipad Word Bit-s StWcifiod 3 7iX2.7

I1 Ck-a(v~r lidwatir (Leoft llvt'-bninieiate 4 It Xx 12

(A R 13 Clear liicatr (Ritit lhyte) - limmedliate 4 20XX I. 2

Cl.R Clear])(Vic(, Controller 2 fixx [. 25

(I1. Clf.ar Interrupt Spfcibied 4 23XX '5

C111l1) Cim plottilt I Iut lbl gse 4 1 itXX 1. 15 2.0

U 'ID (rnidenlil 11 1 4 I7;Xx S

NilV Divi b otiitv Plrqrain Memory Word 1 SH8XX [U 75

I ifvs lvide flouttle ii Sciatchpait Memory wind 2 (XX In S

f SI z i creriwrt mid "Skip if Seratetipad Word is Zero 2 1 oiXx 2. a :.7-o5
FNP, f:11iatit itevil to [ritmriilpt 2 Li2X

INt f Intfitit [),,vice (rini IJitv rrupit ing 2 [(XX S

IN S i - t I'll 4 11X

AINT hini vI SUrieItrnp

p, 1111 Vn (i e

j NIS)ulitip to Sutirout joe H X X;;

j .s i in1) to Sutrutine , Indirect 6AX

instruction Excri ' n

Mnenmonic Instruction lIescription I-orrtiait Opciiie 1i

.SS lump After interrupit Sen-se 2 F4XX 2.

LAl 1 3 Load X A (Left Byte) - lnitiediit 4 01INX 1.

LAAI11 Load XA ii tt Ityte) - non11ediate 4 1 7XX 1.

1110,13 loi X11 (lvft [tvtel) - lotnicitdiate 4 (Mlxx 1

1DRifD1 lait X 13 (1111,1A Dyte) - [ntidaeI 4 I)IX X

I1CID Laod X(' (left Blyte) - Immilediate 4 01X x

I'(11 Bi I iad XC(Itptt Dyte) - Imimediate 4 09,X x I.

l,iad XA fromt I'roi1 'ant MeiotiY I .1 ;X '1'

I D~AS Lomal XA fronm scratctipad NMrniiry 2 iiiIXX 1

[.Dl Loail X11 fronm l'ro,.r am Nienoirv I 48XX 'i

LDRtS L;id XI I rom Scratchpad Memoiry 2 8(.XX I .

1,DC lalXC from Profprami Memory I 4A Xi

I1DCS LI of X C from Sc ratclipad Memory qOX Xx

1. Dl) Loadi D~ouble froim Prograin Memory 1 44xx AJ. ii

LD1)DS Load Doule fronm Scratchtmad Memory 2 14 XX2.

[.ftL, Load liR front Progranm Memory 1 42XX I 2.0

l.DLS Lad 1.1? frott Sc rat cliptad Memtoiry 2 8iCXX I !

IDU I['tado [fit fronm llriiiT'ran Memmory 1 40XX .0

1.l)US Load TIll friom Scractpamt Mentory 2 7CXX I .1

11AL,1 [oad Il1l (left Itt - Ininlettiate 4 CIXX 1. 25

LII 1,13 Loadt Lil. (Itilit [Byte) - Imminediate 4 MACX 1. 25

LU~LB Load U 11 (le(ft Byte,) - Iimtidie 4 ()()x 1 2

[.11 Loa l UintCt ilt,1 'tit Byte) - limo diate 4 05SX I . 25 1

MIPY Mu It iph tilt by I'ri g,,ratn Menmorv Word I SfiXx I, D.

MPYS Multiply tilt liv Scralrhptld Memnory Word 2 Cx X 5. 75

NDI: Andto lii from [nu 1rirai Memory 1 5 A X X 2.01

NDI'S And Io [ill from Scnittcttad Memory 2 CCXX I . !)

NI? NJ Normalize l)-Ioble 4 2EXX 2.0 *.25(rii

01?11 Or ti Cl? front Program Memory I OC XX.

Oil I fS 01? (1 [1 fromt Sc ratcttpad Momtorv 2 jDCXX 1.5

21

C. INTERFACE MODULE DESIGN

In between the triplicated partitions of the bit-slice processor are
the partition interface modules as shown in Figure 8. These modules are a
combination of partition output SCC's, Voter-Switches, and partiticn input
SCC's. The function of the SCC's is to produce error patterns so that the bit-
slice processors can be properly reconfigured to switch out a failed partition
or part of an interface module . Using the Voter-Switch devices, tie faulted
device can be isolated while maintaining as high a level of redundancy as
possible throughout the design. The usage of these devices in the interfdces
is described next. For more detailed information see Section III-G, Custom
Devices.

V(OTEIR & SWI('I[

-., :1 1 GA'I:S

6- PIN

Figure 8 Voter and Switch and Self-Checking
Checkers

1. Self-Checking Checker Without Mask

The S.C.C. detects errors ir its inputs as well as any faults in the
checker itself. In a self-checking cir(uit such as the S.C.C. the inputs and
outputs are encoded so that any assumed fault within the circuit, or -"v non-
code input, produces a non-code output cr at least one of the normally occurring
inputs. The validity of the output code words is checked by a check circuit that
produces valid/invalid indications. The check circuit is also designed so
that it is self-checking and produces the same "invalid" indication for a fault
in the check circuit as for non-code inputs. So called "totally self-checking"
(TSC) circuits, which are one of the classes of self-checking circuits, were
proposed by D.A. Anderson (1). This class of circuit has the property that
an assumed fault never causes an erroneous code output in addition to the
attributes already cited. (For a rigorous definition of TSCC see reference 4.)

22

2..

In this flight-control application, the fault model selected is the
so-called "stuck-at model," where hardware failures in a circuit are modeled
as some logic gate input or logic gate output lines stuck-at-1 (S-a-i) or stuck
at-0 (S-a-0). Faults are said to occur when one or more lines become S-a-i
or S-a-0. Thus, when a single line is stuck, a single fault is said to have
occurred. Multiple faults, where more than one line is stuck, may occur. If
one or more lines become stuck at the same logic value, i.e. 1 or 0, a uni-
directional fault is said to have occurred.

Once the fault model has been elected, the checker code can be
determined. The choice of the code can strongly affect the oroperty of the
checkers and functional blocks. Constant weight and unordered codes have
been suggested (2,3) for the design of totally self-checking circuits. These
codes are used because the structure of the functional blocks and the assumed
faults always lead to unidirectional errors (4). Unordered codes have the
property that they can detect any unidirectional error. A consequence of the
use of unordered codes is that totally self-checking checkers must be built to
check them.

The code selected for the bit -slice processor partitions is the
triplication code, which is then partitioned into a trio of duplication codes
for input to the S.C.C. The code selected for the S.C.C. is the dual-rail code.
Thus, within the S.C.C., one of the signals of each of the pairs of signals of
the triplicated partition signals is inverted. In the S.C.C. device up to 16
triple inputs can be checked. Within the S.C.C. 's, each of the three oairs
of signals is checked by a self-checking tree consisting of 4-out-of-8 T.S.C's
as shown in Figure 9. The output of each tree is a dual-rail signal, in
which an error is indicated by a 0.0 or 1.1 combination. These three tree

'I I nk / 2

C, H ,)/ 2

CII 41

CI!C

SCC

,t S(i'C

CH #2---- 1'

4 0

2

('11 #2 '0

Figure 9. Totally Seif-Checking Checker (TSC)

23

outputs are combined with snapshots of the three current input signals, and
the three inputs from the previous microcycle. These signals are saved in
three separate scanning registers as shown in Figure 10. These three
snapshots are identical except for the error field. The 6-bit error vector
of each snapshot is rotated with respect to the other two snapshot error fields
so that the dual-rail output of each of the three T.S.C. trees is available
externally. This permits a check on all input signals to the S.C.C. The
field definitions of the scanning register are shown in Figure 11.

By clocking the inputs and outputs of the three T.S.C. 's into the
three snapshot registers every microcycle, the current status of the interface
is captured. The current input (i) is shifted down to the previous microcycle
input field (i-1) on the occurrence of the next clock cycle. Thus, where an
error is detected by one of the S.C.C.'s it causes the RRU Maskable S.C.C.
to indicate an error, which stops the processor clocks that clock the snapshots
into the snapshot register. Thus, the cause of the error and its location are
available for diagnosis by the RRU. Each snapshot register can be clocked by
a different processor clock if desired.

Similarly, each snapshot register can be examined by clocking out the
contents. In the SDFTP, the RRU shifts out the snapshot by supplying a shift
clock to each register. Hence, the snapshots can be read independently by the
RRU computers. This occurs after the error outputs have been processed to
turn off the processor clocks, and the RRU computers have been alerted that
an error has been detected by being interrupted. The contents of the scanning
register can be repeated since the information is recirculated as it is read out,
if an error is detected during the first read-out. Under some conditions only
part of the snapshot, such as the error vector, may be read out.

The outputs of the S.C.C. are connected to the RRU Maskable
S.C.C. trees and to the Input Buffers of the RRU computer. Each of these
S.C.C. trees combines all of the S.C.C. signals of the devices, located at
at the interface, into a single dual-rail signal, which interrupts its associated
RRU computer and bit-slice processor clock. The other connection of the
interface S.C .C . involves only one third of all of the S.C .C . outputs. Each
RRU computer is connected to only one of the three scanning registers of each
of the S.C .C .'s. By connecting the second and third scanning registers of
each interface S.C .C. to different RRU computers, all three computers have
complete but independent access to the error vectors and S.C .C. inputs. By
shifting these scanning registers out under the shift clock control, as much of
the snapshot can be obtained as needed for diagnov-is.

Since each S.C.C. without mask can handle 16 or less inputs, all
of the four interfaces require just two devices, with the exception of the control
store-processor array interface. This interface requires six devices since
there are less than 48 signals that must be protected at the partition output
and inputs. Thus a total of 12 devices are needed per SDFTP.

2. Voter-Switch

After a detected error has been diagnosed the connections between
the bit-slice processor may need to be changed, and the status of the Voter-
Switch devices at each interface, which permit this automatic reconfiguration
under the control of an RRU computer, may be altered. Each Voter-Switch
device incorporates a triplicated set of circuits for nine triplicated signals.
Each circuit consists of a three input voter and set of three switches. Both

24

it I

IIF

Figure 10. s.c .C. Without Mask

25

- cl)

- Cl"Ic

cli

C

Cl)l

44Q

- ? -- '6

< < ' -

L Z' Z Z

H - -

* - .-- ---

V. - 2

the voter and the switches receive the same triplicatea signals as shown in
Figure 12. The voter computes the majority function of the three inputs
while the switch selects one of the three inputs for transmission to the out -

put. Only one or the other is connected to the output at any one time and the
connection is controlled by a command register that can be set externally.
In the case of the SDFTP, the RRU computer transmits the command from its
output buffer to the Voter-Switch in serial form. The information is then clocked
into the command register by the command clock, which is also supplied by the
RRU computer. Each of the three sets of nine input signals is controlled by a
separate command register. For the SDFTP application each command register
is controlled by a separate RRU computer and can be loaded independently.
In Figure 12 a single bit slice is shown to the right of the dotted line and the
three command registers are shown to the left of the dotted line. Each
command register controls one of the three voter-switch circuits.

The voter-or- switch (VOS) bit of the command dictates which
device.voter or switch, will provide the output . When VOS is a "1". the voters
are selected while "0" selects the switches. The command bits Cl, C2, C3
determine which of the switches is connected to the input. A '1" in anv of
these three bit positions selects the corresponding switch: i.e. Cl=l,the
top of the three switches. Only one switch should be used to maintain the
independence of the channels.

A total of 10 of these devices i-; required to provide this function

f(- all of the SDFTP interfaces. The processor array -microsequencer and

microsequencer control store interface each require one Voter-Switch device.
The processor array-memory interface requires two devices while the control
store-processor array requires six.

D. RRU OPERATION

1. Architecture Review

First, the architecture of the error reporting system will be
reviewed because a good understanding of the various parts of the system and
the way they interrelate will make it easier to understand the overall operation
of the RRU.

Figure 13 is a simplified overview of the processor and the SCC's.
Each of these components is discussed in detail in Section III G. The basic
processor partitions, including the microsequencer (Ais) control store (CS)
and processor array (PA) are shown separated by voter 'switches labeled V S.
The control store and processor array require more than one voter 'switch
to handle all their output leads. The three processor channels are illustrated
with a three-dimensional effect.

Errors are reported by SCC's. A net of three TSC's labeled "out"
is connected to the output of each processor partition. Likewise, the TSC 's
labeled "In" are connected to the input of each processor partition. These
circuits check for errors at the input and output of each processor partition
and provide sufficient information to locate errors in either the partitions
or the switches. The error signals from these partition SCC's are merged

27

~1

- - - C)

Cf2

w
C

w

C)

04

- --- - H

- - C'~3

I~J. - * 1.

- r r

ii:
I *. 44

- z -

-~ - *- - -~

A A A-r - -

.r. -

I -~

F

28

4-7-

Ii I

, I IN I I

>i11t .

together via special masked SCC's, which provide interrupt signals for each
of three RtRU's (reconfiguration reovery units). The interrupt signal is
generaied whenever any unmasked error is obtained from the system.!

INI

The interrupt signals cause the RRU's shown in Figure 14 to go to
an error processing routine, which determines the cause of the error and
issues the appropriate commands to switch data signals around the fault in an
optimum manner.

The RRU processors are implemented with monolithic microprocessors
with appropriate memory and 1/0 circuits. They are described more fully in
Section III E . The RRU processors are operated independently for the most

part. They are loosely synchronized in that they can communicate with each
other and the maintenance panel by handshake signals. They also perform a type

of synchronized control when turning on the processor clocks such that the

processors are locked toiether. The interrupts that initiate the error response

processing are also provided in triplicate and each RRU processor can select

any one of the three. w

29

ZTZ7H

A0

tf,

tL

306

It is inp Oant to understand, in some detail hoth the manner in
which the processor svstemi can be recocwifigrgured with the voler switches and
the way in which the error signals are derived. The R1,' svstem is the link
from the error sigmals to the voter switch controls. The number 2 voter
switch and the 2 OUT and 2 IN SCC's are shown in functional detail in
Figure 15. Each voter switch ceceives all three channel signals coming from
the microsequencer. The voter switch outputs can 1,e derived by a vote (f
all three inputs or they can be switched directlv to n,, one ol the three inputs.
Initially, the voter is used so that a single nilcrosequencer failure is masked
by the voter. Should two microsequencers fail, then each switch is set to use
the one remaining inicrosequencer as an in pu . Eac i of the following control

stores (CS) would thus receive a correct input

The number 2 OUT SCC is connected to the outputs of the three
microsequencers as shown in Figure 15. Likewise, the number 2 IN SCC is
connected to the inputs of the three control stores. The e error sigMal is
derived by comparing channels 1 and 2: and e 2 is derived rn channels
2 and 3 and e 3 from channels 3 and 1. The number 2 SCC IN error sigmals,

e , e 2 and e3 are derived in a similar fashion from the ' , 2' and 3

The interpretation of these error signals is as shown in Figure 16
Failures associated with each error pattern are listed here. The interpretations
of the first fault is relativelv strai.ghtforward as ihdicated by the entries in the
coluni titled Single Faults. The only entrv that might seem confusing is the
interrupt error. This is detected wh n an interrupt yields no error signals
in .ny of the SCC's. Since the SCC ou:pu -: are only examined after an
interrupt has occurred, the only conclusion that can be reached is that the
interrupt circuitry has failed. The RRU circumvents the problem by switching
its interrupt input to one of thc other two interrupt signals.

Consider, now, the pro)bem when a second fault is sensed in a
single output SCC . There are several possibilities for each of the double
error patterns. The RRU's now must resort to either running processor
diagnostics or performing a series of sequential tests to determine the cause
of the second fault.

The operation of the system, where two faults occur in the same
SCC partition is best described by an example. Assume that the first fault

is the failure of the channel I microsequencer. The second fault is then
assumed to be the failure of the channel 2 microsequencer. This can result
in a situation where all three error signals indicate errors. As seen in
Figure 16 even though channel 1 had been identified as the first error it
nay be impossible to determine whether the second fault is due to a failure in

channel 2 or 3. Thus, a processor diagnostic is run to determine which
channel is at fault.

Another example is the failure of SCC 1 followed by the failure of
microsequencer 1, having an error pattern consisting of e1 and e 3 . However,
it is not clear whether the second fault is due to a SCC 3 or a channel 1
failure, since either of these failures in combination with the original SCC 1
failure yields the same error pattern. Here, a sequential test is used.

31

'I

CI)

- :i C~

- r
Cl

- - U)
Cl Cl Cl (~)

- C-)
CI)I.-

Cl
- I

L~j

~ CI)

- ~."1 -

0

-'I -~ '-i Cl C) '~ Cl CC '~-4 I
.9CC C~ U

CC

~-4 Cl CC Lr~

CC Cl , -a)
N I

-4

Or~) I

_ L~11
Ci)

32

(D

>u u

+ +3

+ + +

c %1 CI- Ufi

-4 - ' I

UQU

CQ mO

+n m h U 4-

33 - e3 ~ C

The SCC 3 error is masked and the voter 'switch is switched to the channel 1
input and the main processor is restarted. If there is no error interrupt then
the second failure was, in actuality, an SCC 3 error. But if the failure was
microsequencer 1, the input SCC following the voter 'switch will indicate a
channel 1 error, since channel 1 is being compared to the other voter outputs
at this point. Upon detecting a channel 1 error the switch is either thrown back
to the voter position or to channel 2 or 3.

It should be emphasized that these double-fault problems occur
only when two faults are reported by a single SCC. Two faults each occurring
in different SCC's are processed as successive single faults.

Two simultaneous faults in a single SCC are recognized, and
diagnostics are used to determine any failed channels. The remaining faults,
if any, are assumed to be SCC errors.

The error interpretation for input SCC's is similar, with the ex-
ception that the channel errors are now caused by voter 'switches. A failure
here results in switching to a good function input. This causes the error
pattern to revert to the no-error case, and a second error of this type will
cause a single fault pattern and be easily detected and identified.

Maps of the system errors for three system states are shown in
Figure 17. The map is laid out in the same order as the system components
shown in Figure 13. The blank boxes represent the SCC's and the other
boxes are the other elements in the system as labeled. The first map
illustrates the no-error conditions. The second map indicates e and e
errors in SCC 2 OUT, which is a channel 1 Its fault. The third miap adds a
channel 2 voter/switch fault to the previous fault, resulting in e 1 and e 3
errors in SCC 4 IN.

The voter 'switches each switch nine bits of data, whereas the SCC's
report errors in 16-bit slices. This results in some overlap of switchable
slices between SCC's for the design described. This situation is depicted
in Figure 18. An example is SCC 3b, which monitors parts of slices 3b,
3c and 3d. There is no way to determine which 9-bit slice caused the error
by examining the error signals alone. Currently, the system assumes that
all three slices are bad and acts accordingly. It would be possible to distinguish
between these slices if the actual data are read from the SCC registers.
However, this would take considerable time and there seems to be no advantage
to isolating the fault to one slice for reconfiguration purposes. The exact
locations of the fault for maintenance purposes would be accomplished by the
RRU self-test programs.

2. Error Response Operations

The initial part of the RRU operational flow diagram, which performs
the error interpretation and reconfigures the system via the switches, is
shown in Figure 19. When the main processors are running, the RRU's are
either idle or running self test, waiting for an error interrupt. When the
interrupt occurs, the errors are read by the RRU processors via their 1 '0
ports. The e signals from all the SCC's are available to each RRU. These
are the same signals that are merged together with the masked SCC's to
provide the interrupt signals.

34

1 1 2 2 3 3 4 -1
SCC'S OUT IN OUT IN OUT IN OUT IN

a

NO ERROR CONDITION e2 r M~ w s SW PA

C

a

el b

C11 1 MS ERROR IN SSC 2 OUT e2 SV Fms SW CS SW PA

e3 I

a

________________ __ _

Ct1 MS ERROR IN SSC 2 OUT el S x S SW A1
PLUS A CIt 2 VOTER/SWITCH e2 SW MS SW CS SW PA Is, ,"x
ERROR IN SCC 4 IN e i

C

Figure 17. System Error Maps

SCC# 1 2 3a 3b 3c 4

Bits 1-16 1-16 1-16 17-32 33-48 1-16

Switch _____________________
Bits

PA COND 1 1-6 X
MS 2 1-9 X
CS 3a 1-9 X

3b 10-18 X X
3c 19-27 X
3d 28-36 X X
3e 37-45 X
3f 46-48 X

PA 4a 1-9 X
4b 10-16 X

Figure 18. Switch Fault Error Reporting

35

E~AI1) e
("UT TP'

I FROM LOWEST

-IO NL: ENTERNu~ IN

Figure ~ I F. First Par of S7 eaioa
FlowDaga

36

IN-U---I-N'

The order of the e signals on the RRU ports for one of the RRU
computers is depicted in Figure 20. All eight bits of port 1 and four bits
of port 2 are used. The signals are obtained by shifting them out of the

SCC registers, starting with e1 and ending with e3" The order shown in
Figure 20 is the order for the channel-I RRU processor. The channel -2
processor receives the e signals iollowed by e3 and then e.. The channel -3
processor receives e. fiifst followed by e1 and e 2 , in that oder. The orders
cannot be the same because the same output pins must supply the masked
SCC's with all three error signals in parallel. The RRU must send a clock
to the SCC's each time it wants a new set of error signals. The signals on
one port are all read at the same time. An error is recognized if any e.,
e. pair are the same. The normal flow then continues to the box in Figure 19
labeled "save new error from lowest numbered SCC". The logic must reject
all error signals from previous faults that have been processed. These errors
remain in the system and may be read each time an interrupt is generated.
(They are prevented from causing interrupts by masking in the merging SCI' .)
The logic then selects the error bit combinations from the lowest numbeie, SC
This ensures that only one new error will be processed at a time.

The next step in the flow diagram of Figure 19 is to determine
whether this error report already exists in a fault list of previous detected
faults. If it is not in the list the error is entered in the list and processing
is resumed. If this error has already occurred once it will be in the list. A
particular error is not designated a fault until the second time it occurs. This
prevents transient errors from reconfiguring the system needlessly.

Once a fault is detected it is tested to see if it comes from an input
or output SCC. If it is an input error some processing is always needed. It may
involve running a diagnostic or just reconfiguring. If the error is from an
output SCC it is checked to determine whether it is the first or second fault in
the SCC partition. A single partition fault is generally masked by the following
voter and no reconfiguration is needed. Second faults are generally more
complicated and require running some sort of diagnostic. The exact logic path
followed by a given fault is determined by the particular combination of faults.
There are several special oases that do not follow this diagram exactly.

A flow diagram showing the processor diagnostic procedure in more
detail is given in Figure 21. The diagnostic is selected by the RRU sending
a diagnostic starting address to the processor. The RRU then sets the
interrupt circuits into a mode that only allows interrupts to be generated at
the end of the diagnostic. If this were not done the processors would be
stopped as soon as the first error appeared in the diagnostic run. The RRU
processors, however, only know the correct results obtained at the end of
the diagnostic. Therefore, the diagnostic must run to completion to permit
the RRU to determine which channel has failed. The diagnostic is started by
enabling the main processor clocks- it then runs until the results at the end
of a diagnostic are in error at which time an interrupt is generated. Flags
are tested to determine which routines should be run to interpret the test
results.

The major steps in the reconfiguration and masking processes are
shown in Figure 22. The first step is to generate the proper code word
to enable the clock signals needed to change the voter 'switch state. The

37

000

cz x1

38

SEN D DIIA(;NS'LIC
START ADDRESS TO PA

[1CSET IN TERU PTi
CIRCUITS INTO
BLOCK MI)E

' U RN UN PA
C LOC KS

WAIT FOR

INT lIRiIU PT

l]

'1'iE 1" FI.A6S
T() IE'I" fERMINE
I R PEIt II()_" ssIN(-

INT 1':1H PH [T
T EST It [-St" I IS

Figure 21, Diagnostic Ftow Diagram

39

SENND CO(A) E H)
I(GAIN ACC 'S 1 "(T
C(NT R l)1. (' , KS

UHEI ATE myrSVIu"n

C(AD) MAS OM
F"A ULT IMAIT I'HN

[ING; C(ANTI'ICIW IKS

SE'ND) CODIE WVORDI |

'1 0 GAIN '
C(ONTRL C IPCKS

CRE1"ATIE MASK

WA.G E b'RoIN

EKND MASK
'(- SCC'S U'SING;
C(NTROI, CLO[CKS

Figure 22. Reconfiguration and Masking Flow
Diagrams

40

requirement of generating a code to turn on the clocks makes it quite unlikely
that a runaway RRU could accidently gain access to the switch controls. The
next step in the reconfiguration is to create a switch command message from

the fault information. This command is then sent to the switches.

In addition to setting switches the new errors must be masked from
the interrupt circuits: otherwise they will continue to generate interrupts. This
is done in a manner similar to the way in which the switches were changed. A
new mask image is created from the fault information and sent to the masked
SCC's. Again, a clock signal is required to send the mask to the SCC's. This
clock signal is enabled by the same code wordthat enabled the switch command
clock.

The main error processing flow diagram is completed in Figure 23.
Once reconfiguration is complete, or it is determined that no reconfiguration is
needed, the processor is sent the address of the rollback routine. The roll-
back routine causes the processor to resume execution of the applications
program that was interrupted by the error, The execution starts at a prior
point, where the state of the processors and all interim computations were

saved. Thus, the computation is restarted at a point that was unaffected by

the error: the execution is restarted by signals that start the processor
clocks in synchronism.

A
S1 EI) ItUIl~,lBA(A\t

AMI..S I'() (C A.iSSO

[C 1,)C {S

S' AII S

.NI I"H I.') ,

Figure 23. Final Part of 1RU Operational
Flow Diagram

41

The RRU's now exchange system status information off-line without
interfering with the processor operation. The main purpose of this exchange
is a form of self test to ensure that each processor reached the same result.
Should there be any disagreement, the bad RRU processor will be declared
down. This status exchange is also needed when failures occur in the
interrupt system, since these errors are not normallv monitored bv the other
RRU processors and a status exchange is tile only waY to update the status in the
other RRU processors.

The results of reconfig-uration are then reported to the maintainence
system, which accepts status reports fromn each of the processors. If one
differs it assumes the disareeing RRU processor is bad. At this point the
RRU 's return to the idle or selt-lest ltoo) they were executing when the,
orginaI interrupt occurred.

3. Self Test Operations

The self tests described in this section are a form of built-in tests.
They mav be used at an, time to determine the operating condition of either
the processors or the RRU svstem. Thin is m contrast to reacting univ to
errors detected during application program execution, as described in the
pex'vious section. The self-test operation does require the cooperation of the
bit -slice processors for all tests except the RRU processor diagnostic. Thus,
the processil'rs will not be available for execution of a)plication programs
during most of the testing. The self tests require many iterations of test
sequences with resulting lon11g execution times. The entire sequence of tests,
if)erftormed at one time, could last for several seconds.

The self -test capability would be used to determine the status of the
..Vsltem, hefore and after a mission, to ensure that there are no failed
components. A second use for the self tests is to augment tihe error response
operations. The error response operation cannot dire(ctlv detect errors
such as a partiaI R{U pt-,ces Soi failure. It will dia-nose such tailures as :i
ci)nt rol failuite in either a v'ole swit(h or as al CC faIhi re. Tie svstem
w ill. howe ver, be c Ii'r'ectlv iecontitgured t)Ut it ma' take a Imger time ti
,et cti'iine the corl'tcl 'e'n fi-Ourati n than it would have ift the error' had

previouslv been detected h%' self test. An example best illust rates this point
Assuome that the tine in the 1 0 poti that contrtls a g iven voter switch module
is broken and undisc ovetred. Then tile voter fails as a secowd fault. The error
r'e ponse syst em will then attempt to switch to Channel 1 1to bypass the voter.
However. since the RRU is broken, nothingy happens. As soon as the processors
begins execution the voler causes another error interrupt. The error response
syste too assures ti channel - I switch is bad and tries Io switch to channel 2.
Fbs sequence of restart s continues until all chianinels have been tric,i aid the
entire voter switch is declared down. If the self tests had been run, the bad
switch ('ont rol operation would have been previ ouslv detected so that, when
the voter failed, the sxsteni could immedialev declare the entire voter switch
down and act accordingly.

The price fort this added speed is a loss of p'oCVSsOr time atid
additional program memory in the RRU's. The loss o pi)i' cssi)i" time, ' 101d
be alleviated if there was a meth od of runmmin the self tests perudicall x- riti , 'i ni
he mission, when the processor's were not needed for execuling application

softxwa-ec This wlld. Of course, depend on t he ,x (1t nature of a i ven millIssion.

"42

A flow diagram for the self tests is given in Figure 24. Each of
the tests is summarized in Figures 25 through 27. The first test is tile
RRU processor self-test. This test does not require the main processor
and so may be run concurrently with applications software. It is an instruction
diagnostic that makes simple computations and compares the results to pre-
computed values. Two bits on the 1 '0 ports are provided for testing I 0
inst ruetions.

The next test is an exchange of data via the intercommunication 1 '0
lines. It tests these lines as well as provide an opportunity for the RRU
processors to update the status of the system in each RRU processor. This
routine also runs concurrently with the main processor application software.

The voter switch test, the RRU clock controller test, and the SCC
error detection and masking test all require the cooperation of the main
processors. These tests are similar in that they attempt to exercise all
parts of the RRU system by using the main processors to provide known test
vectors at all partition interfaces. Manipulation of these test vectors coupled
with the reaction of tile RRU system provides a means of diagnosing RRU
failures. These tests all rely on the error response system to sense the
state of the errors in order to make maximum use of that software. These tests
are quite involved and lengthy and are split into segments so that only one seg-
ment need be executed at a time. thus minimizing the length of time that the main
processor must be tied up performing self test.

E. RRU DESIGN

1. Hardware Components

A block diagranm of the HRU system is shown in Figure 28. The
error reporting SCC's, while not shown in this diagram, are considered a
part of the IRRU. The l'unctions and circuit details of the error reporting SCC's,
the masked SCC's. the voter 'switches and tle main processors are described
in detail elsewhere in this report . The only description of these modules in this
section will be to describe their interface with the RRU processors.

The central control of the RRU ties in the RRU processors. Their
primary function is to read the state of the system as inputs through their input
ports and then compute the appropriate control signals to be output via their
outpat ports.

In additioll to the RHU processors and its 1/ 0 ports there are tripli -
cated HIRU clock ('ontrolle 's and main processor controllers . Tile RRU clock
controll' "s function1 Is to) limit access to the control of the error reporting
SCC regislers, the masked SCC mask registers and the voter, switch switching
commands. It does this by gating ill the clocks entering these functions from
the HRU processors. The reason for providing this function is to reduce the
pr xibility that a fatiled HRU processor could inadvertentlv fail the entire sys-
tem by randomly manipulatin- tile SCC's and voter switches. There are three
ways of enabling these clocks, all of whir h require a different (ode word to be
calculated by the HHU . The first method uses the voted outputs of the inter-
rupts from all three channels. Thus, anytime a normal error interrupt occurs
the clocks can be enabled with a code word. The second method is to enable

43

I M 1 21

iMV

Figure 24. Self -Test Diagram

44

H

H

72 ~ - 14

0

-. :2:

0i

:2 I 45

00

an U)U) U u
0) U U

HCIf)

ZU U

UU3 0z-

Z =- -- 4
0l 0o co0

0

Cll)
P4 a -

AU Cl)14
0Co~la0 w0 ~

co0 :: 4-4C

Cl) H46

cZ

H0w

Cl))

z
F-H

u

o 47

00
cj CM

l)

oc

COl

2n2

48H

them when rwmlng tests by voting test control signals from all three RRU
processors. This, together with the RRU processor-generated code word and
a test signal from the main processor, will allow generation of clocks for
testing. The last method enables the clocks when two of the RRU processors
are down. It does this with just the good processor's interrupt signal and a
code word. The RRU clock controller is described in detail in Section III.G.

The main bit-slice processor controller is used to start and stop the
main processors. Its function includes turning off the bit-slice processor
clocks on the receipt of an error interrupt from the SCC's. The controls
necessary to force the processors to start at any one of a number of test
routines or to go to the rollback point are also provided. These controllers
consist of a few gates and flip-flops.

The RRU processors are implemented with monolithic microproces-
sors. The baseline system used Intel 8048 single-chip microprocessors, which
have their own clock oscillators and require only the addition of a crystal and
two capacitors. It also contains 1000 bytes of ROM, 64 bytes of RAM and a
timer on the same chip. The 8748 is another version of this microprocessor,
which has 1000 bytes of EPROM rather than ROM. The 8048 microprocessor
is intended for control purposes and its I/O port capability is easily expanded
to large numbers of I/0 pins. It has a cycle time of 2.5 riicroseconds. Most
instructions require only one cycle but some do require two cycles. It is a
40-pin device.

The 1<O ports used in the baseline are Intel 835D combination IIOM
and 1/O ports. They contain 2000 bytes of ROM and two 8 bit 1, 0 ports, which
can be configured on a bit basis to be either input or output pins. I)ata placed
on the outputs can also be read so they form a convenient means for determining
which data is being outputted. There is an EPROM version desiznaled the 8755.

The 8355 ROM and I/O circuits are connected in a straightforward
fashion to the 8048. All of the necessary signals to drive the 8355's are present
on the 8048. The 8355's require very little drive current and, therefore, line
driving buffers are not needed. An example of an 8048 connected to onie 6355
is shown in Figure 29.

Alternatives to the 8048 microprocessor arc either the Intel 8044 or
8085. The 8049 contains twice the amount of ROM and RAM but is otherwise
identical to the 8048. The 8085 is a version of the 8080 microprocessor that
has a self-contained oscillator and timer and is compatible with the 8355 memory
and I/O device. Both the 8049 and 8085 are available in faster versions than
the 8048. The instruction repertoire for the 8085 is different from the 8048 so
it is difficult to determine how much faster it might be in this application. Both
of these microprocessors are candidates for use if greater speed is desired.

2. Description of RRU Sifrnals

The details of the HRU design are I)robably best understood by
describing the function of each signal going to and from the RRU processor.
The input sigrnals are listed in Figure 30 and the output signals are listed in
Figure 31. Signal positions in the list will be designated by an I for input
signals or an 0 for output signals, followed by a letter designating the major
heading and then by its number under the heading. The.'efore, the number 1
output SSC signal is desitgnated [Al.

49

8050

• !1t......

[7. H F". ',F

FFI'.F,.F"FI,'AFF .-

Figre29 Mcrprceso ad omintin OMan I/Pr

Interconnections for Baseline Components

50

A. SCC AiROR/REGISTER OL TPUTS D. I/O INSTRUCTION TEST

1. 1 - OUT 1. 1/O TEST IN
2. 1 - IN
3. 2 -OUT
4. 2 - IN E. PROCESSOR CLOCK CONTROLLER
5. 3a - OUT
6. 3a - IN 1. TEST A
7. 3b - OUT 2. TEST B
8. 3b - IN
9. 3c -OUT

10. 3c - IN
11. 4a - OUT
12. 4b - IN

B. INTERCOMM UNICATIONS

1. READY A IN
2. READY B IN
3. READY P IN
5. SEND/'RECEIVE A IN
5. SEND/RECEIVE B IN
6. SEND/RECEIVE P IN

7. DATA A IN
8. DATA B IN

C. INTERRUPT

1. INT 1
2. INT 2
3. INT 3

Figure 30. Input Signals

51

A. S.C.C. MASKS D. MISC. CONTROL

1. M 1. SCC REGISTER SELECT
2. 1 MASK1 2. CLEAR
4. MASK 2 3. 1/0 [NST. TEST
4. 1
6. MASK 3 E. RRU CLOCK CONTROLLER

13. VOTER SWITCH CONTROL 2 CODE
3. WORD

I1 VI S 1 4.

2. V S 2 5. CODE WORD CLOCK
3. V S 3a 6. MASK CLOCK
4. V S 3b 7. V/S 1-3f CLOCK
5. V S 3c 8. V/S 4a,4b CLOCK
6. V'S 3d 9, SCC 1-3b CLOCK
7. %S 3e 10. SCC 3c-4b CLOCK
8. V S 3f 11. RRU TEST CONTROL
9. V S 4a

10. V S 4b

F. MAIN PROCESSOR CONTROL

C. INTERICOMMUNICATIONS 1.
2. IN 'I'E R U PT

1. REAI)Y A OUT 3. VECTOR
2. HEADY B Oll 4.
3. READY 1) OUT 5.
4. SEN) RECEIVE OUT 6. RRU INTERRUPT BLOCK
5. 1)ATA OUT 7. CONTINUE

8. A CHANNEL BYPASS
9. B CHANNEL BYPASS

Figure 31. Output Signals

52 A

The first set of signals to be discussed are the RRU clock controller
signals. As mentioned previously the function of the clock controller is to
limit inadvertent access to those modules controlled by the RRU processor.
The signals OE1 through 4 are the lines over which the RRU processor sends
a code word to the controller. Four parallel lines are used to speed up the
sending of the code word. Thu code word requires a clock to enter it into the
controller. This clock is signal OE5 and is simply another output pin, which
is alternately set to one and zero by software in the RRU processor.

The next five signals are the actual clocks that are used to clock
masks to the masked SCC's, change the settings of the voter switches and read
the 'rror SCC registers. The last signal OEl1 is a signal that is voted with
corresponding signals from the other RRU processors to enable the clocks for
test purposes.

The interrupt signais IC1-3 are the three interrupt signals generated
by the masked SCC's. These signals are provided for testing purposes. 'ile
interrupt system is shown in Figure 32. Each set of masked SCC's generates

an interrupt signal . All three signals are supplied to three switches each of
which supplies an interrupt to one of the RRU processors. Should this signal
fail such that it creates an interrupt, the interrupted processor will perform
the normal error routines and find no errors to account for this interrupt. It
then samples the INT signal that was passing through its interrupt switch. If
that signal is high then the problem is in the Masked SCC's and the switch can
be changed to use one of the other interrupt signals . If the INT signal was low
then the error is between the masked SCC's and the RRU processor,and nothing
more can be done to reconfigure the system; then that RRU will be declared
down . The other two INT signals are provided for those cases when they are
the signals used to interrupt the RRU processor. The opposite problem -- no
interrupt is generated when it should be -- is detected when status is exchanged
between processors. At this point the affected processor can test the INT lines
and reconfigure as previously described.

Figure 32 also shows signals going from the RRU processors to the
masked SCC's. These are the mask signals OA1-6. A mask image is sent
serially in two-rail fashion over two lines. The data are entered by means of
a mask clock, OE6, from the clock controller.

There is one line from each of the error reporting SCC's going to
each RRU processor. They are input signals IA1-12. The errors as well as
the register contents are read from these lines by clocking them with the
appropriate clock signal, OE9 or 10, from the [RU clock controller. There
is an additional control, OD1, called SCC register select. This connects either
the i-i register or the i registers to the error SCC output. This is important
when a control store error has occurred. The SCC register at the control store
output must output the current or i value since it is this value that must be
c('ecked for errors. lowever, the SCC register at the input to the c ootrol store
must also be read to obtain the address to be used to look up the (' correct output
in the control store copy in th(RHU pr()('essor. The address that caused the
(rror was the prcvious or i-1 v- lue, which is also stored in the reglsters. It
the SCC output was iont switched to the -1 register hy the r'egister sl't bIt
tl' PIRU lprocessor would have to read through th(' 48 bits ot li 1 value first,
and this would slow the proc((ssnl' con'st'rablyv

53

000D 0 0002 C 0 0 0 0

MASK MASK NI\S ASK M A l

4,) I

i4S fM

_ N _ _ _. _I _I ININU I

M<11 VI 111 1(i l

(,\ Mr I

Figure 32. LiRU Maskale S.C .C. Tree

5)4

The voter switch cornmnands , to enable eithier Ohe voter Or inldividual
channel Inputs, art sent to the vo~ter/ switches via signals 0131 -10. Thel(c onm-
mand is sent serially oJtt to the appropriate line by 'vclocking the voter. switches
with either the 0E7 or 8 clock signals, which pass through the HIM clock
controller.

There are several input and output line-, used to coniiiniicate but~cen
the HHU processors and the maintenance panel. Thie input signials are 1131-b
and the output signials atre OC 1-5. The ready -ini, ready -out and send receive
in and out signtals are used ats handshake sign-als between 1RRU processors and
the test panel . The ready -inl signal signifies that the other processor is ready
to tranist it or receive, depending on the state of the send,' receive line . The
ready (out and send 'receive out are the handshake signals beingi Sent (Alt by the
processor. Only one send,, receive out signal is needed sinice it can be(bussed

tAlth other proucessors .There ms.be separate ready -(out i.1lsota
o)iilN ()M OO 'ti i5)1rsjonds at at timie . The dat- in lines cone ic unv I :omil the
two thic i p rOC eSSois . since the maintenance panel does not transmit datil . il,
(ia U ot sinlis, bussed ~o all the other processors . Thie processors nornmall v
s tay inl OWi rceivO mlode Until the v wish to transmit . Should the proess5or that
was t1 receive I i-"sageswi tch to the transmit statte at the(sanme t imie as tlhe
11('St p)roe es s Ic, t he haiidshakes will. preyvent the tiransnmissi on frii ()((cI r rill,

Norniall Ihe o it' t ra1sitssilolls a Fe fixed in thet prog'rams.- -(1il ht tis
jpri)b.leiii iii -: Wsit rs

Ihl(111,1i)j)i'~(5~ ibickss toiitiol us,-s si-nilis 0I-9 aind IL' 1-2.
Thesuil 01- 1 -5 C (o)ise in~,m interrupt vector, wich is sent to) tltit ni1 1ii

Piwtssito (Cs ,W It ill 1111111) to its IiQ'Xt I'O~tiiit . It is; used to si-id the(iiiiir
jpi-m-ss0I. it ()I Ai .1 'oMback point ()I to at ttest routine. it i (t>FIS

thenl i-c 'artted using! the(continlue sigal it test progrIaml is to be innl, the
PRU interrup~t blo)ck sinl0F6 . is enabled . This signal prevents the main

)i~c cs ro ()neing, stopped,. before the end ot at dialgoost ic. hv ci'rrs- ca rl\
in the(dia gni st ic. It is important that this be done because thlt HR U caii only1%
interpret test vailues at the end of' a diagnlostic . The bypaiss and te-st slignals
(tetecm ince whet her the(o)ther PR HU proc essors arie alilingI- to Issue a cii I lllue,

sil n xlIc1 ca;st it canl he(bypassed

Thi, 1 0 test '- ignals , 11)1 and 01)3. arie used liv the PH U pci ites Si r
self -list dhiagnostic to test its 1 0 Instructions. byv sending data out onet(pilii and
i'adiitg vl il(the wl othe j. It canil accomplish this without disturbing the data
curriti\ (m thle ittIeotp)ut lhues

The'last signal, 01)2. is at clear sign,1 ii Which canl be used b\ the HPH t
jprocessm.i to ini1tialize the variou.,; circuits inl the systeml

3. Maskable SCC Tree

'Vhf' function)f the Maskable SCC Tree of ech of the HRtJ 1r' -

p)1oce-Sslluig channilels,, is to reduce the largec nuniler', of signals t 12) tio s iiii
signial as shown inl Fil i,(e 32. The SCC ouLtp~tlts (if interfaICesi (D 0/ 111i

T see FgureJF 13 for inumbe red interface) canil he ;iccominiod ittd h% I tle
SCC with Mask, while thi SC(outputs o)f the(ijiterhiti' 13) alrt (iclivi'd
to (fti Seco'tnd SC(' with Mask, simce caili i~f thesec Sc(''s (-ill timuihhi 24 inpu)Lts

55 :

o)r less. The outputs ot each of these devices Is C oibined in a second
checker, a fa ur-out-ot-eight checker whoise dual-lall output i-a, c oliverted to
sinle-raitl form by an exclusive OH circuit . 'Fl. Is idone to match the HRU's
interrupt signal requirements

Thest SC(" w tth MaSk devices difftr si ,nni)iica tfrom lhose uSed
InI tilt bit-slice processori' interfaces ill two tt ' y). Olle o! thes e is til. %,ida
input capability . as sho wn iln Fi 'glre 33 . Another is the incorpor'ittilo (A a
iiiaskiiig capabilitv to block signi ils known to produce error Sig-la." tronj
descending the tree and producing undesired error indications 'The Ilmask is

computed b' each tree',s HIU computer, based on the curren t'l''rur -tate ol
the SDFTP, and is usually changed after the detection of a solid errolr. Bv
having ile RRU update tile mask after each detection, it is possible for the,
SDFTP to continue operating after a number of errors have been detected.
without the known faults continually interrupting the SDFTP every tinw a
vector occurs that exercises one of these faults.

The outputs of all three of the SCC trees E-Ot gatcscan be
selected to interrupt any tf the tI1U computers by means of a multiplexer as
shown in Figure 32 . These thrt,e E-OH outputs are made available to th(,
RRU computer by connecting them to the PPRU computer's inout buffers . This
permits each RRU computer to isolate failures to the SCC t rets.

F. RHU PROCESSOR SOFTWARE

1. Design

The RHU processor softwari'e is 0tvided lilo I() a . h, ll. t
part Implements the error response processill ii. ill aa)I's) i lg ,ISK (li> -
cussed in Section III.D and its operational fl)t (c .i i'.ills A I.F a' dliil.a .(1 Ill
Figures 1t, 21, 22, and 23. The second part am iil'nans ili t last)it)cS-
sing discussed in Section II.D ad is diag t'anin d ill 1-i UI'm, 2-t. Thta I uliC ll at

the error response syS. is to react to errol- am5 ')1 a Itt d III lilt' t-'til - 'al'ckinl,
checkers. reconfi ure the. n ain processo irs. t i c 's .ta, a alit1"a. al th'
switches, and report the fault to) the l1ailntellailct > Ili, Hw h If u t last sstem
provides a means of testing portions oif the HI'U that'aliat hw gua i'iiitid tao b'
dirc tly tested by the self-checking checkers . This tuint in i,, wtctul t)r tbutlt -
in test functi(ns, to ascertain the health (ui the svstim befri t, t o55 , a ir to
supplement the error response system by providing inarniatianm that mla\ il
saom) e Instalc'es speed up tilt' errar 'respi)llse pl'o'e Ssili

Whenever possible, cominii routin's are i ntl d(' 111taa sabil'a IIi'- tao
save pr(Ogra m menuiory space. 'This usually results in slightlv longer running
times ,-(that only the longe(r , rou tines are made 11i) subroUtiiiw's,

'The sizing estimates mnd running tinles faor thoise Ip ts a4 the s\st'na
that require software diag'nostics cannot be accurateIv c-sti iiaa ted, faor it 1s
beyond the scope of this work and is too ear ll i the (It'slgll to derive accur ate
estimates iof coverage (percent of c ircult' v tested I versus ro~ram sii' and
running time. The attendant problems ari' discussed in sn(i drtall In Si,''ton
IV.

.11

NI \>i\ I I',

NI.\>I\ I
"
'
,

M1R . G - MASK

REGLS'FER k GATES

2

APII

\Il

C C -- -h - s,

/ -

" I * I - --- ____ __ _1.\t_1 > -_

I -qt !

F'IAU 'ti 33 ;. S<.C" .C. WVth Mask

IJ

2. Program Size Estimates

Estimates of the program sizes for both the error response and self-
test software are given in Figure 34. The error response software requires
3200 bytes of menory, the self-test software slightly less, at 3000 bytes
However, it is not accurately known how much coverage is obtained for this
amount of code . The control store tables in item 3 provide a fourth copy of the
main processor's control store to help determine which control store is still
functionim, after two of the three have failed.

The tutal program storage is 9200 bytes . Each RRU processor has
11, 000 bytes of ROM . However, 4000 bytes are connected as data lienmfr' to
access the control store tables mole efficiently. The control sturo tables re-
quire only 3000 bytes, leaving 1000 bytes unused. If this memory were to be
used as program storage, a few more gates would be needed to give access to
it as program memory . Currently, without this 1000 bytes, there arc still 800
bytes of spare program memory.

The self-test software uses the error response software to a large
extent in performing tests. Thus the 3000 bytes for the self-test software is,
in reality, the , mount of additional software needed to perform the self-test
f unc tion.

ESTIMATED
BYTES

PER PROCESSOR

1. ERROR RESPONSE 3200

2. SELF TEST 3000

3. CONTROL STOIE TABLES 3000

TOTA L 9200

Figure 34. HRU Program Size Estimates

3. Error Response Timing Estimates

The ruming time of the error response routines is largely dependent
on the exact combination of ailures in the system at any one time, because of
the many different branches in the program logic . Therefore, the running time
estimates are illustrated by five examples given in Figure 35.

The first two examples are the same as those illustrated in the error
maps in FigLure 17. The first example is the failure of the number I microse-
quencer with no other fa ilures in the system. The software requires each failure

58

2. Progrn ize Estimates

Estimates of the prograni sizes for both the error response and self-
test software are given in Figure 34. The error response software requires
3200 bytes of memory, the self-test software slightly less, at 3000 bytes.
However, it is not accurately k; uwn how much coverage is obtained for this
amount of code. The control t re tables in item 3 provide a fourth copy of the
main processor's control store 1() help determine which control store is still
functioning after two of the three have failed.

The total program storage is 9200 bytes . Each RRU processor has
11, 000 bytes of ROM . However, 4000 bytes are connected as data memory to
access the control store tables more efficiently. The control store tables re-
quire only 3000 bytes, leaving 1000 bytes unused. If this memory were to be
used as program storage, a few more gates would be needed to give access to
it as program memory . Currently, without this 1000 bytes, there are still 800
bytes of spare program memory.

The self-test software uses the error response software to a large
extent in performing tests. Thus the 3000 bytes for the self-test software is.
in reality, the amount of additional software needed to perform the self-test
func tion.

ESTIMATED BYTES
PER PHOC ESsOR

1. ERROR RESPONSE 3200

2. SELF TEST 3000

3. CONTROL STORE TABLES 3000

TOTAL 9200

Figure 34. RRU Program Size Estimates

3. Error Response Timing Estimates

The running time of the error response routines is largely dependent
on the exact combination of failures in the system at any one time, because of
the many different branches in the program logic. Therefore, the running time
estimates are illustrated by five examples given in Figure 35.

The first two examples are the same as those illustrated in the error
maps in Figure 17. The first exatmple is the failure of the number 1 microse-
quencer with no other failures in the sv,;1om. The software requires each failure

58

-Estimated Time 'I Microseconds

Off Line
ist 2nd Sum of Status
Error Error 1st 2nd Reporting

1. Microsequencer 1 Failure 1800 2000 3800 16,400

2. Microsequencer 1 Prior Fault 2400 3400 5800 16,400
Plus a Current Failure in V/s 2
SCC 4 (Port 2)

3. Microsequencer 1 Prior Fault 2100 3100 5200 16,400
Plus a Current Failure in V 'S 2
SCC 2 (Port 1

4. Microsequencer 1 Prior Fault 2100 8200 10,300 16,400
Plus a Current Failure in
Microsequencer 2. This is ,
second fault in a partition.

5. Microsequencer I Prior Fault 1400 2200 3600 16,400
PILus an hlte r rupt Circuit
Failure

Figure 37.. Error Response Timing Estimates

to occur twice before it is detected as a fault . This prey, ats transient errors
from needlessly reconfiguring the system . Thus a failure of the nunber 1
sequencer will cause the error response software to take 1.8 milliseconds to
process the first occurrence of the error. If the error is a hard failure, the
system will immediately be interrupted with the second error, which takes two
milliseconds to process . Thus, the main processors will have been off -line for
the sum of these two times as indicated in the third column in Figure 35. This
example requires a total of 3.8 milliseconds before the main processors are
restarted at the previous rollback point.

If this error were only a tratnsient then only the 1.8 milliseconds for
the first error would be taken awav from the main processor.

The RRU then takes an additional 16.4 milliseconds to report the
failure and checks that all RIU processors have reported the same failure.
This reporting process is the same for all tests.

The second (example adds a Voter-Switch error to the number 1 it-
crosequencer failure . The errors are reported through a different port for
this Voter-Switch, slightlv affecting the timing. The time to process the two
errors is 5. 8 milliseconds.

59

The third emniple is similar to tie second example, except that the
Voter-Switch error is reported through the same port as the microsequencer
error, reducing the running time by 0.6 of i millisecond -- to 5.2 milliseconds.

The fourth example is an example of two failures in one partition.
which is more difficult to handle . The processing time has almost doubled here
because a microsequencer diagnostic most be run in the main processor. The
total time required here is 10.3 milliseconds . The running time, in this case,
is largely dependent on a main processor diagniostic running time, for which
no accurate estimates are available.

The last example illustrates an interrupt circuit failure, where the
interrupt is stuck in the "ON" state. This failure requires 3.6 milliseconds.

Thus the typical error-handling times range from 3.6 to 10.3 milli-
seconds.

4. Self Test Timing Estimates

The self test timino estimates are given in Figure 36. The RHU pro-
cessor tests which take 23.7 milliseconds, are run without disturbing tile main
processor operation. The cooperation of the main processor is required to
carry out the bulk of the testing on all the switches, self -checking checkers and
other miscellaneous circuitry. The running time for these tests is given its
item two in Figure 36. The complete set of tests is estimated to run for three
seconds. This is not objectionable for built-in test requirements, but would be
prohibited during a mission . These tests were made more useful by dividing
them into small segments each of which could be run at different times. The
typical length of these segments is given in line 3 as 3.6 milliseconds . This
places each segment in the same time range as the error response routine
times. Again, these estimates depend heavily on main processor diagnostics
for which there are no accurate timing estimates available.

The last item is the 16.4 milliseconds needed for reporting each
failure as it is detected.

Estimated
T1ie In

Microseconds

1. HRU Processor Tests 23,700
(Main Processors on Line)

2. Tests Involving Main Processor 3,147,000 (3 seconds)

3. Single Segment From '92 Above 3,600

4. Status Reporting (Main Processors 16,400
on Line)

Figure 36. Self 'rest Timing Estimates

60

G. CUSTOM DEVICES

1. Summary

A number of circuits have been designed to facilitate the imlplemen-
tation of a self-diagnosing processor using dynamic redundancy. Most of the
circuits are important in terms of the efficient realization of the concept and
are predicated on large-scale integrated (LSI) circuit embodiment of a number
of functions. The microsequencer device is desirable in any processor in
that it reduces parts count and the number of devices in any processor. In
the SDFTP, it is important because the microsequencer part it ion is replicated
three times in the design and, thus, the parts reduction is increased by a
factor of three.

The other four circuits are integral to the implementation of the
self-diagnosis and fault tolerant concepts. Two self-checking circuits, which
detect errors not only in their inputs but within the circuits themselves, are
defined. They are the Self-Checking Checker (S.C.C.) Without Mask and
With Mask. These LSI circuits are used between the bit-slice l)rocessor parti-
tions and in the RR:U respectively. The S.C.XC. Without Mask is the realization

of three totally self -chiecking checkers (T .S .C.) and three scanning registers.
The S.C .C . With Mask accepts a Ltrg r input vector that can h, masked, so that
selected inputs are rendered ineffective in the code check of the device.
However it has only a single TSC and therefore, unlike the S.C.C. Without
Mask, cannot check the triplicated input.

The Voter-Switch is an iml)ortant circuit with respect to tile fault
tolerance capabilities of the design because it provides the reconfiguration
capability. It consists of a triplicated, voter and three-way switch, which
can be used to connect triples of inputs to triples of outputs. In the voter.
each output is the niajorit V funeti on off the three inputs. The choice of the
interconnection can he externallv selected.

The last circuit in the complement of these new LSI circuits, is
the clock controller. It is applied in the RRU and is designed to preveiit
inadvertent clocking of information into tlie Voter-Switch devices and thereby,
possibly changing the interconnection. The check signals are interlocked so
that either the majoritv of the RRU computers control the clock and 'or these
computers supply a code word for one of three modes of operation.

6 1

2. Self-Checking Checker Without Mask

The Self-Checking Checker (S.C.C.)Without Mask is a device that
checks the outputs of the SDFTP bit-slice partitions. It is designed to detect
errors at its inputs as well as in the circuit itself. In addition to indicating
the presence of an error at its outputs, it saves a copy of the input that is
currently being checked as well as the previous input. The device is designed
to check three sets of identical 16-bit inputs using self-checking circuits.
The three sets of inputs are grouped into three different pairs of 16-bit inputs.
Each pair of signals is encoded in a dual-rail unordered code, which is checked
by a self-checking tree as shown in Figure 37. The two level tree is composed
of four-out-of eight (4 8) self-checking checkers. The single second level
(4 "8) self-checking checker has a dual-rail output, encoded so that the 0.0 and
1.1 output combinations indicate that an error has been detected. The three
trees are totally self-checking (TSC) in the sense that an assumed error
never causes an erroneous output.

~~ Ci

CH 1 I - 7L ! "

(I I 2

/.1 -- ---

SCC

Figure 37. Totally Self-Checking Checker (TSC)

The outputs of the three TSC trees are saved in scanning registers.
The three dual-rail outputs are clocked into the three scanning registers along
with the three sets of 16 bit inputs as shown in Figure 38. Each of the register
clock lines are brought out separately so that each of the scanning retisters can
be individually clocked as in the case of the SDFTp

62

F-t

t II I - -

It I -
- 7 I- -- , . '

6.3

-', ,\jt. I I

l:'i~ur I '8 Sl -(k Ch-e .2. .)W totM.s

4 63

p-i _ ____ _ __ ____

The three scanning registers save the three sets of 16 bit inputs and
the T.S.C. outputs; also the three sets of 16-bit inputs from the previous clock
cycle are saved. This snapshot is updated every clock cycle with the current in-
put sets shifted down to the previous cycle's locations. The format of the snapshot
captured by the scanning register is shown in Figure 39. The three T.S.C.
outputs are located at the output ends of the registers. The error information
consisting of the outputs of the TSC, is rotated with respect to each other so
that the three T.S.C. outputs are simultaneously available. This makes it
possible to detect all errors detected by the T.S.C.'s as is done in the RRU
S.S.C. With Mask.

The snapshots of the inputs and their T.S.C. outputs can be read out
by supplying a clock signal to serially shift the data out. Since the shift clocks
of the three scanning registers are separate, the shift out of the snapshots can
be done independently by supplying the appropriate clock signals. The registers
are designed to circulate the information as it is read out so that, if desired.
the snapshot can be retransmitted by supplying additional shift pulses.

The S.C.C. Without Mask can accept up to three sets of 16 inputs
and provides three dual-rail outputs. It is planned to be implemented in a
64-pin package and has a gate complexity of the order of 2200 gates. See
Figure 40.

IN ,112 I N I I_ I 1 11
l XII I I I I "

I-N.\ ,II ;2 1(ti-li •

1\1l11 T :; N I'II F 2 IN l'I I I [IM)1 1 :11 l ,l1 I ' X '

>,.((. \ !II ,I]l.I'I

Figure 39. Scanning Register Format

64

Ippp-I I I\ I

'I V I -

I I

I ii \\ I II i I \-].I \-i'.] \

I.;

If

> 1 I (I (\\1x" I II,\.-},

1A Al

>1 ,1 I 1 I\ '

(\ I l' I I 'I I,.x ? . :

t 1. 1 < \I:

1<! ,I X I -

Figure 40. S.C .C. Without Mask Pin Usage

3. Self-Checking Checker (S.C.C.) With Mask

The Self-Checking Checker (S.C.C.) With Mask performs a function
similar to the S.C. C. Without Mask; that is, it detects errors in its input and in
the checker itself. Like the S.C.C. Without Mask the design is based on a
Totally Self-Checking Checker (T.S.C.) tree. However, since the function of
the S.C.C. With Mask, in the SDFTP, is to reduce the size of theSDFTP error
vector, consisting of all of the S.C.C. Without Mask outputs, the input domain
consists of pairs of signals where each bit is encoded in a dual rail code.
Thus a single tree is sufficient to reduce this set of S.C.C. Without Mask
outputs to a single dual-rail output having the same unordered cxe encoding.
An error is indicated by the 0.0 or 1.1 signals.

. . . .5 I I I II • I ..

This T.S.C. tree is a three -level tree. The first level is composed
of 4 8 T.S.C.'s and this is followed by a pair of 3 '6 T.S.C. 's. The last level,
which produces the output, is a(2 '4) '.S.C. As in the case of the S.C.C.
Without Mask the output of the T.S.C. tree is saved in a scanning register as
shown in Figure 41.

The T.S.C. is combined with the two dual-,ail encoded 24-bit inputs
to form the snapshot. This information is captured in the scanning re aister by
using the computer clock line to set up the signals in the register flip-flo)ps.
In this device only the current inputs are saved as contrasted with the S.CC.
Without Mask device, which saves both the current input vectors and the
immediately preceding clock-cycle inputs.

Since the function of this device is to reduce the number of S.C.C.
Without Mask error signals, and it mu-t continue to operate after one or more
errors have been detected, those outputs that are known to be sources of errors
must be masked out. Hence, a mask register, which can be externally loaded

and will block the input signals that are not to participate in the over-all error
i.,eneration (come from devices that have faults), is provided.

The blocked signals are replaced by properly encoded signals. A
one in the mask blocks the input signal while a zero allows the input sigmal to

he processed by the device circuits.

New masks are set into the mask register by serially shiftin" in the
mask hits two at a time under the control of the mask clock. Tile operation of
the mask part of the device cmn be verified by monitoring the Mask Out out -

put when the shift clock is supplied. As new information is read in, the
previous contents of the shift register are shifted out.

Pin usage is shown in Figure 42. Gate complexity is about 800.

4. Voter-Switch

The Voter-Switch device interconnects the SDFTP partitions. Since
the partitions are triplicated the device must accept triplicated inputs and

produce triplicated outputs. In the Voter-Switch device the triplication is
at the bit level. Each of the triple cutl)uts per bit is eithe r the majority func -

tion mof the triple inputs for the bit, or it is one of the triple inputs for the partic-
uli r it that has been selected by one of the Voter-Switch skwitches. Selectlion

of the majority function or switch input is controlled by the Voter-OR-Switch
(VOS) bit of the Voter-Switch Control Register. The selection of which of the
three inputs is used is under the control of the switch control bits C1, C2
and C3, which are also stored in the Control Registers. To assure independence
of each of the three sets of circuits,the Control Register is triplicated and is
used to control only one of the three circuits that generate each bit's triplicated
output. This is shown schematically in Figure 43 where a single bit of the
Voter-Switch circuitry is shown with the three sets of Control Registers, which
are used for all of the nine bits of input. The triplicated outputs for each bit
are produced by three, three-level networks. The network output is developed
bv an OR-gate, which receives the outputs of the gated voter and the gated
switch selected inputs. These inputs are gated by the second level of the net -

work, which is controlled by the setting of the VOS bit of the Control Register.

66

\II\(K

l s I\ I

IM I sI

[Nm It
-74

I lii

IN I I } NPI I I T I~

0'II 1 1A .1. 2 -1 2-1 SI (AC; I : -2(1

Fig ure 4 1. S.C .C. With Mask

67

IN P1'S::

III' ("\

Ni \SIK

1il " I' K I

IJI
N \S1K - *

NMASIK CIA-1) \K -- 1

I I)\'V K

(; W IX I)

Figure 42. S.c .C . With Mask Pin Usage

A "one" value for the VOS selects the switches, while a "zero" selects the
voter that produces the majority function of the inputs. The selection of the
particular input, when the switches have been selected (the VOS is a one) is
determined by the C bits of the Control Register. Setting Cl to a one selects
i 1 1 by means of the top, third level AND gate. Similarly, setting C2 and C3
to ones, selects i T 2 and i 1 3, respectively. Hence, any input can be routed
to any one of the three outputs for this bit and, therefore, can be accomplished
in the other bit locations using their bit networks, which are identical. Fxcludli)'.

the Control Registers, the Voter-Switch consists of nine bits of triplicated
networks as shown in Figure 43 for a total of 27 selector slices, which are
identical except for their inputs.

68

C 4 6 0 L1 '* @ 6 0 7:

0 6 00 ~ 6* 6

-*11

Changes in the interconnection between partitions are accomplished
by changing the three Control Register contents. Each Control Register

ii controls one-third of the networks and each can be changed independentlv ()I
the others. In order that these changes in the interconnections do not affect
the information passing through the Voter-Switch, the changes should be
scheduled during periods of time when information is not being exchanged
between partitions.

Loading of the Control Registers is accomplished by serially s-hift mg
in the four bit commands using the shift -in clock. Since each Command Reclister
has its own separate input and clock line the Command Registers can be in -
dividually loaded.

The Voter-Switch pin requirements are shown in Figure 44. The
device complexity is of the order of 400 gates.

5. RRU Clock Controller

The RRU Clock Controller provides a comprehensive control over
the RRU clock signals. It is designed to prevent inadvertent clock signals
from changing the SDFTP control and diagnostic registers, except during
certain prescribed intervals. The signals involved are the Self-Checkin-g
Checker Shift Clock, the Voter-Switch Coimmand Clock, and th, Sell- ft ekiii
Checker With Mask Mask Clock. Besides regulating the, ;e signals th. dhv,

pri)vldes additional drive for these sigls.

Control is exercised over the clock signals by inhibiting each clock
signal in a two-input AND-gate as shown in Figure 45. This inhibitin, siglnal
can he removed in three different ways, corresponding to three different modes
of operation for the clock controller. All three modes ar('conditioned by a
code word circuit that must receive the correct mode code word before tHie in(dse
inhibit can be removed. On receipt of one of these code words and pr(per
decoding, the designated mode can be commanded. This circuit is shown in Itie
middle of Figure 45. It receives the code word a nibble (4 bits) at a IIm ind
shifts the 32-bit code word into the register under the control of the cod(word
clock.

The first clock mode is the norl al Ior unfailed RHi mode. Ii lihmi

nmde, the three RRU S .C .C . Willi Mask i igna Is are used to sMt f1ip-Ii(q)s ii
which tlt' outUs arc viited by a .]nijorit gate as shown in the top of .1-'irt'45.
The flip-flops ('apt u re the S .C C . With Mask error signal. sine it idl . I
1s so0on as the S.C .C . snipshot 'egistesl' a r 'eld out . 'he \otti utj)tit allch
produces the llmatolty' function of tle ihr(r- tIlM S.C .C. With Mask ',i sigi il>.
then changes the clock inhibit signlal Io ;Ill ena ble s ig ml . The cascadi' 't tlt- k 1)
inl)ut AND and th(Ol provides the code word conditionin tor this patth (iii , cI
and the aiternative neth ods of enabling the imitput clock ANI)- sa)..

The second mode is the single RIlU interrupt signal which permlts; a
single RRU computer to turn the clocks on after supplying the correct clock
word. As in the first mode, the interrupt signal is used to set a ft p flip. whioh
actually drives tile chck enabling circuit consisting of a two input ANI)-icat. ant
a three input OR (See Figure 45). Again, the AND gate provides the coi'nrant

word conditionimn of this mode signal while tile ORt gate is used io mertgv him,

alternate clock enablintg signals.

70

Hf { -'Xi- ,

FI P Is

- VI IT H _ Pi I_\ i

Fi-ure 44 . Voter and Switch Pini Requirements

Thle third test mode is provided to permit the RRU to be tested. The
voter circuit at the bottom of Figure 45 produces thle majority function of the
three RRU computer test signals. The voter output is conditioned by both the
code word decoder output and thle main processor test signal so that test in(_
can he performed only when both the RRU computer and the bit-slice processor,
controlled b' the RRU, have called for a clock turn-on. This conditioning is
accomplished by the three-mode clock enable paths.

After each enabling of the clock signals, the circuit Must be restored
to its original inhibited condition bv the reset signal. In the SDFTP this
signal is generated by an RRU computer.

The clock (ont roller device conit ol.- e i gh cloc k signals as shown InI
Figure 46. The proposed circuit is a 40 -pin package (and has complex it v of
about 400 gates.

, ,)M / \',!) 11

I I

I' 2

- .-7 :

.- - - -, .4 H. -, .

).N)I A45)1I I I S"

1 M i I) S. C. C7.

1110, ME W()III

I{I{Ji C()l. \\'t ll)j)* (A (I

(" P. I{"

Hi it INT I IR, I - --V

11111 1 1 1.] S

i RUMW :'2 A ES I;

TFUST IU[(N.\

filSV 1K>

(I'E il toi
I (0WE R o

I()V X 1

Figure 46. IWU Clock Controller Pin Assigmment

73

6. Microsequencer

The proposed microsequencer chip is intended for use in the
SDFTP microsequencer partition, but it can perform the microprogram
sequence control for any similar microprogrammed processor. In tle SDFTP
it reduces the parts count and number of devices significantly because of the
triplication of the microsequencer partition. In this partition it replaces
four hiah-sneed counter devices, two quadruple two-to-one multiplexers, and
an eight-to-one multiplexer.

The microsequencer extends the microprogram address field width
and adds a microprogram subroutine stack. The added capability is gained
without slowing the sequencer or adding excessive power dissipation. The
commercially available microsequencers generally offer more sophist icat ion
than required for a computer microprogram sequencer, with the attendant
costs in power, speed, and reliability. They suffer from the need to address
the largest possible market.

The prosposed microsequencer contains a microprogram register
and incrementer, a two-word stack for microprogram subroutining, a tally
counter for microprogram loop control, and a condition multiplexer to select
jump tests from six data dependent conditions. A block diagram of the
-equencer is shown in Figure 47. The function of the circuit is to generate
the next microprogram address, given the current state of the machine.
The possible next address, given that the current address n, is the next
consecutive address n - 1, a jump address input from the control store,
the address at the top of the subroutine stack (return from microsubroutine),
or the fixed address zero used for honoring a program interrupt. The choice
of the next address is controlled by the instruction input to the sequence,
Table III , the external condition inputs, the tally counter, and the address
input. The tally counter i: loaded from the address input: it can be decremented,
and generates a zero tally condition.

The function of the sequencer is as follows. The instruction decode
logic, Table III , generates tihe control signals to operate the remainder of
the sequencer. In addition to the instruction input (Io - 12), the logic uses the
output of the condition multiplexer, Figure 48 , and tile condition select inputs
(CS o - CS 2). The tally counter Figure 49 is simply commanded to load from
the address input, to decrement, or do nothing. It is a 12-bit l's complement
counter that uses the carry out as a zero detect. The counter is svnchronous
with carrv look-ahead logic over a group of four bits. The heart of the sequencer
is the multiplexer, microprogram register, and incrementer logic shown in
Figure 50. The multiplexer chooses, on command, from the instruction
decode logic, the input to the microprogram register from either tile incrementer,
the stack, the address in, or the constant zero. At each clock the microprogram
register is loaded with the output of the multiplexer, which becomes the
address output to the control store. Tile incrementer adds "" to the micro-
program register and makes the result available to the multiplexer and the
stack.

The stack, Figure 51, is a two-word last in-first out stack. It is
used to store the return address, nl4 1, when a microprogram subroutine is
called. The two-word stack was selected because the control is particularlv
simple and the logic implementation is fast. Also, two-level subroutine

74

A I)I)RSS IN

(AINN - AINo)

FI 42-PIN PACK GE
N 12 '

MAX

roll

I I

STACK M UX ITALLY COUNTEIi

NN

" [P IEGISTEIR C LEAR

II lN(I!'MI'NTEII'II

TCON 1)

CON I
SEL 3

(CS0 -(S 2)

ADDRESS OCT
(YN - Y0)

Figure 47. Microsequencer

75

TABLE III. SEQUENCE TABLE

()p '()IH, (lq"I.\ I(IN

MA'"N II H' '(\lIJII I)N I1I1 I
(I A I 1 1,, (JN I . 1I1(,N I1 M I.

I I I W, 11 ()NIH II1)N Ii I

it I(.I 1, I N1 111(N

I l I I II t (NI)II()N I.\l.-l
(; 1t III'\N 11 (N I IU N I-A.\I.,1'

M7 II I I \ \ I I \ 1 l l .N tI 11 11 U I I [()N I A I..l

IN : II I "I 'N l1 I .l(l .\ I()Ns

I .. IIII (I .\ll A i "lI A '()P

IMAN II -II IX A , -1, A T, A I, A A I., N V II 11,'
I'l'sllI ('1. l1 A 1 A 1 A ,I. J X

(II~ i. it A I, A I .N
A.1 A I I A .A X

Al\ I N.IY I A I I A I.,

1 1,1,Y ')I N l' Y) A 11 A I1

PIx Il I

C. 1,., (X -

-1 I').'<

ST .(')N I'- t)I (*)Ni)I'1'I()N M l III, NI It

Figure 48. Mierosequencer Contro)l

76

, 51 iArIL
" - i.11. , . m ii i i l I I

L'

ILL

H- ~ 77

* i . -

f-

' I:

C.),

-.

'78

r~..

1*
2

1,

-- Lw-

1<
F ________

1
~h

~

43
z

71

7:~

~ -f.

-J

2 -

24E

79

nesting is adequate for efficient microprogramming of almost all types of con-
puter instruction sets. In fact, there is seldom a need for more than one level
of subroutine. Larger stacks are often advocated when, the application program
is part of the microprogram, which is not of interest here.

The above logic diagrams specify the function of the microsequencer
chip. The approximate gate counts associated with each function are as follows:

Mux. Microprogram Register, and Incrementer - 179
Tally Counter - 144
Stack - 180
Instruction Decode, Condition Mux. - 35

These total 528 gates, which is a modest-sized chip, especially
when it is considered that many of the gates are part of multiplexers that
can be realized by a few transistors in some technologies, and when it is
noted that most structures used are quite regular.

80

IV. SELF TEST

Self-test is used for a number of different reasons in this design. In the
bit-slice processor, it is utilized in the on-line mode to determine whether one
of two identical circuit implementations is faulted and, if so, which one. It is
also used to periodically exercise the error detecting and reconfiguration cir-
cuits to verify that they are still unfailed. In the RRU, the Maskable S.C .C.
trees are similarly exercised to, initially, detect errors; but if an error is
detected it is used for locating the source of the error. The RRU computers
are also self-tested to verify an unfailed status.

In the case of error detection, the self-test verifies that the coverage is
in place and operable. In the error location mode, the self-test programs are
not only executed to detect faults but, on completion of the tests, the precom-
puted final iesult can be compared with a pair of results generated by the SDFTP
circuits to determine which circuit is in error. it is this latter usage that is
important for diagnosing second errors in the bit-slice processor microsequencer
and processor array partition, and in the RRU computers. (The control store
second partition errors are resolved by table lookup in the RRU as discussed in
Section 111-F.) f

To obtain a more confident estimate of the size of these programs and
their effectiveness, particularly for circuit modules containing LSI devices, a
2901 bit-slice microprocessor device was simulated using the Digitest Version-
4 Logic Automated Stimulus and Response (D4LASAR) facility and prooram
system.

The D4LASAR program automatically generates high-quality diagnostic
tests for complex sequential and combinatorial networks. When applied to an
available gate level description of the 2901, the program determined that 3600
test vectors were required to obtain 99"1 fault coverage.

Thus, it is likely that a considerable number of vectors will be required
to test circuits containing embedded LSI devices, such as the 2901, for this level
of coverage. However, lower levels of fault coverage appear acceptable, based
on the reliability predictions determined in Section VI. Thus acceptable self-
test should be of manageable size if advantage is taken of additional factors.
One of these is to use the information captured at the time of the error to he'alize
the error and run those self-test segments that exercise those parts of the circuit
contributing to these errors.

The self-diagnosing processor demonstration described in the Program
Plan (Section VII), offers an opportunity to better quantify the size and coverage
of these self-test programs.

81

V. RELIABILITY ENHANCEMENT AND PREDICTION

A. INTRODUCTION

The reliability enhancement of the SDFTP, with respect to the sim-
plex processor, is achieved via static and dynamic redundancy. The bit-slice
processor is partitioned to reduce the size of the circuit modules that are
switched. This was accomplished without incurring undue interface switching
costs. Hence, partition size is a compromise between the reliability improve-
ment due to smaller partitions, which approach "component" reliability, and
the loss of reliability due to additional interface devices, which are needed to
interconnect the partitions and provide error detection and location information.
The resulting three partitions have, roughly, equal failure rates as shown in

Table IV with only four interfaces that must be monitored and controlled, as
shown in Figure 3.

TABLE IV

PROCESSOR PARTITION FAILURE RATES

MICROSEQUENCER 5.66

CONTROL STORE 7.75

PROCESSOR ARRAY 7.73

Self-diagnosis is achieved through the use of self-checking checkers
that extend the error protection boundary to include not only the partitions but
the checkers themselves . These checkers are colocated at each interface with
the devices that provide the interconnection between the partitions. These
checkers monitor the partition outputs and alert the Reconfiguration and Recovery
Unit of the occurrence (f an error as soon as one occurs. These signals limit
error propagation to thu partition in which the error occurs by inhibiting the
clock. Thus the bit-slice processor error state is maintained until the IRU
computer can use the checker snapshots to locate the partition interface that is
reporting an error.

After the error detection and location functions have been accomplished,
the RRU reconfigures the bit-slice processor using the checker error informa-
tion and the SDFTP status that it maintains. The RRU achieves the reconfiguration
by emitting reconfigurat on commands to the Voter -Switches located at each inter-
face. These cornmands are intended to selec either the voter or the switch con-
nection between adjacent partitions.

At th start of each mission, the processt r is configured with the
voters providing the connection between the partition. After two errors are d e -
lected ;It an interface, the R RU commands the Voter-Switch to change o)ver to lh,
switch ('onnection. Oncee re(onfi gur;ltion haA, been ('ompleted, the IRU initiates
tih(recoverv process ill tle SDFTP ill one (f two ways: either the llRI0 vc('tors
the bi-sli(' processor back to the last roll-h)ack point ()r it vectors the proccssNor
to th(self-test routine, which fails thirough i,, toh rollt 'k point inl thei a)plic;tioi
progrmin if In frrors ;are detected durii', , t (self-test ex(eri(Se.

82

F
The calculation of the reliabdilty of the SDFTP depends on he model o

the design dev eloped and the failure rates 'oi the devices employed in the design
The model of the SDI'TP design is described in the next unit. The discussion ()I
the reliability estimate is concluded with t discussion of the use of Ue MI L-2178
Handbook nthod used to calculate the failure rates.

B. SDFTI'P HELAIILITY MODEL

The S1)FTP 'reliabilit\ model consists of the serial reliabilitv of the
bit -slice partit iins and tiw tl H. Each partition's reliability module i> modeled

is the ca;scade, ()I the' folwini, dtv ices.

1) an input S.C C .

2) bit-slice processor partition

3) an output S.C C.

4) Voter-Switch.

Since the bit-slice partitions are triplicated, the partition reliability expression
is of the following forll:

Partition Reliabilitv : R 3 3 2 (1-R) 3 M 1-R)2

where R is the reliability of a single partition

The reliability of the input and output S.C .C. and the Voter -Switch
voter, switch, conlibilier and cornaneI register are of a similar forni. All but
the ,i ter and sw i th i re considered to be in series ini the reliability \ mdel .
IBtecause of the switchimi froi i the voter connection to the switch after the seeond
error detectioi, the voter reliability modifies only the first two terms of the
partition r-cliability exqpression. Eq. 1, while the switch modifies the last t(Im
o) the exprission, 11(,nc(, the reliability equation for the partition moduie i-:

N1 i du u[(1) 3 2 2(1_it)-11) 1
ReLiabi iv ?[) 3 H 1) 1 ?5231) 3 8' P 2V)

-H 2lp R)/ 3 1' , 1 s (i- 1 1 - 3s P 'l I- R, 2)/

3t 2 - .38 I1 I-H
IC IC K, IC IC

3 2 -2) 3 H (.. - 2
C O3 P: I A 3R -

1,2 (3i 2 Ii P 11-H2C (7 C ,

21

I? CIi (IC I? (.R

8 3

where the reliability for the devices is

R - partition
P

R - voter of the Voter-Switch device

s

RIC - input S C C r

ROC - output S.C .C.

I? - combiner of the Voter-Switch
C

RCR - conmmiand register of the Voter-Switch.

'llhe microsequencer and control store-pipeline register follow this
form exactly. However, the processor array requires that Eq. 2 be modificd
to account for the fact that it has three interfaces -- one input and two output
The modification consists of multiplying Eq. 2 by the appropriate third interfact

Sices . Since the processor arra ' y-microsequencer Interface is identical to
thit modeled in Eq. 2, the processor-array-memory interface will be considered
. tilt-, dced interface. Thus. the first and second terms of Eq. 1 are now, modi-
Iled bv two voter eX)ressions. One is the processor ,rray-microsequencer

interf 'ice Vo ttr-Switch deice and the other is the processor array-memory
iiterfm-e dtvice . The third termn of Eq. I is modified by the two switch reliabil-
Ities,4 01 Ihe two pr'ocessor array output interfaces. Thus this part of the expres-

" l tl vo(' l 'l R :eR

I? %l-0) 3

3 1? - 1(1 1?

(1 3 31 32 (1-R 3R 2

SO St O so so S

hI- t' , ' ar", partition reliabii

{ - tp ,,r array-nmicrosequencer Voter-Swit-h voter

v - p'oCksslr arl.y-nit mory Voter-Switch voter

It - -<A, il' l, - Iflic 0Cl .lUen 'lr Voter -Swi~ch switch

R - Frly-lorv Voter Switch swit(l

qutlL i o 3)1 Is ilu til)l d iv thille r'liat ilit\ if the rItl)Ut S.C , ., tlt'
1 prl)itK'.< ir-; Jlr-r , v ('rtsoUel(ct'e l(erf ('c S.C A .. , 'Ind the processoi' - I''lav -
nIr(nnl % ilrrfat S C .(A , h \ t lir-swltcllh collni ,i d tihe (olnilid otmm'iste"

84

relia bilities -Each)f these cir-cuits IS trip1i it ted II id t herefore niod if ies Eq .2
by a factor of the ft)I rof j,4 Iq 1 E-q 4 istept1-sso rIdVrlaOliI
express ion:sth

rq(,-o

P.A Prt itionI I ()I 3 PQ 131 1-? :3 . 1 1-1? 2

3 1? V -H (.3 V '1 -1 2)

(1~ 22 1HH 1H 2

U H 3 .3 R2 (1-R 3 H 1 -P)
31 (?) 3 S 1Hc

32 2C C~
1 {H0 J 31 2 I f(I-H C 3R1 I A? 31? Il1)C

H I'3 1? 2 (1 1 . 31 c R14 (21 2 (4

* 31?C1~(1 HtJmi(3 13 CRM21

R CI\O 3 H CM (11? C 31 CO(HCO(lICo

p V 2 1IP)

1C - inpu)Lt S .C.C . reliabilitY

R C1- output S .C . proces;sor ar I'ax -1111 I-w- it sjukrife ti te rtac

HO - o)utput S.C .(prIocessor1 airi\ miIrtv Inli'Li.ce

R CM - proceszsor ari'av-iuicro sequencur V\ott'i'-S\Y ithA tmiflhiilti'

R CO - pro'icessor l'i'atv-nl~ieni'\' Voter-Switch c~tiihim-1i

RC1'vNI Veft~ ~~a leoeui(e otr- S vItuhl cI1oillind
I- . ,ite r

I?(:NIO proccssoi, ira-Ilnwnlti' \tttr >%k Itch ct)IlI1,il 1tKIS

AD-AU98 016 GENERAL ELECTRIC CO SYRACUSE N Y F/6 9/2
SELF-DIAGNOSING DESIGN TECHNIGUES S(U)

JUN 78 R W HECKELMAN, W W KNIGHT. W W STRAUB F3361577-C-1506
UNCLASSIFIED AFAL-TR-78-183 NL2lllllflfll

EE/hhEEEEElhhI
EmhmhhIhIhIImlIt IIIIEEEII!
IumumIIII

T" processor array and the microsequencer partitions must be
modified t., ". -.- for the use of self-test to diagnosis which of two partitions
has faile ,i - tv o have been detected that affect the same partition. Since the
coverage of u. , seif -test programs is not complete, the term that represents
the condition of two partitions failed and one unfailed is modified by a factor that
accounts for this incomplete detection capability. This coverage factor is the
conditional probability that, given that an error has occurred, the error is
detected. For the microsequencer this term of Eq. 2 becomes,

3Rp(l-Rp) 2 (Rs3 + 3R 5
2 (l-Rs) + 3R (-Rs)2) CFs (5)

where the terms are as defined for Eq. 2 and

CF is the microsequencer self-test coverage probability.s

For the processor array module, the corresponding term from Eq. 4 is,

3 (-R)2 (R 3+ 3Rs 2 (1-Rs)+3R (1-R)2
p P sm sm sm sm sm)

X (R 3 +3R 2 (1-R) +3R (l-R)2 CFPA (6)

where the terms are defined as in Eq. 4 and CFPA is the processor-array self-
test coverage probability.

The reliability of the three partitions of the SDFTP is then the product
of each of the partition modules reliability as given in Eq. 7,

Bit Slice
Processor = R xR xR (7)
Reliability m cs P

where R - microsequencer partition module reliability
m

R - control store partition module reliability

R PA - processor array partition module reliability

The overall reliability of the SDFTP is the serial reliability of the bit-
slice processor partitions and the RRU, which includes the Maskable S.C .C.,
and the RRU computer, together with the clock controller. Since there are three
strings in the RRU, the reliability expression for the RRU is:

RRU Reliability = (RT. RRR C RCC) 3 + 3 (RT R RRC RCC) 2 (1-RTRRRCRCC)

+ 3 RTR R RCRCC (I-RT RRRC R C C)2

86

where RT is the reliability of the Maskable S.C.C. tree

RRR C is the reliability of the RRU computer including its
memory/I/O buffers

Rcc is the reliability of the clock controller.

The SDFTP reliability is then,

Reliability
SDFTP R m RCS R PA RRRU (9)

where RRR U is the reliability of the RRU.

Once the reliability model has been established, the reliability of the

design can be calculated using the device failure rates.

C. FAILURE RATE CALCULATIONS

The reliability assessment performed on this program follows that
given in Military Standardization Handbook MIL-HDBK-217B, Reliability Pre-,
diction of Electronic Equipment. Device failure rates were determined using
the expressions given there for monolithic solid state integrated circuit devices
as,

A ; =ir i (CIi +C2(E 1 0)p L Q IT

where A - the device failure rate in failures/106 hoursP
7T - is the device learning factor

For this projection, 71L was assumed to be I
for all devices (in production)

TQ is the quality factor

I was assumed to be 2 corresponding to quality
level , MIL-M-38510, Class B (JAN)

T T - is the temperature acceleration factor

An average junction temperature of 750C resulting
in TrT of 1.6.

f E - is the application environment factor

This was selected as 6.0 corresponding to an
airborne, uninhabited environment.

87

The complexity factors for the SSI, MSI logic and ROM memory were
determined using the gate counts and tables given in the Handbook. For the
LSI devices, where gate estimates were not available, manufacturer informa-
tion was used where available and, where not available, a gate count was
estimated based on the logic eqiivalents. Complexity factor projections for
C1 and C2 were developed using the Handbook per gate values for the optimum
level of integration. This had the effect of making the per gate complexity
factors less sensitive to gate count for the device complexities of interest to
this program, and reduced the effect of the gate count uncerLinty of the highly-
integrated LSI devices, such as the 8048 computer.

D. RELIABILITY ESTIMATES

Using the device failure rates calculated as described above, the
reliability of the simplex processor consisting of a microsequencer, control
store and processor array, was calculated. The corresponding probability
of failure for one to 10 hour missions were calculated and are shown in
Figure 52. The SDFTP probability of failure for various coverage factors
is plotted in Figure 53.

88

1 x 10 - 3

1 1(I0- 4 i

/
/

/

I x 10 -

I x 11 - 7

1 2 1 3 .1 5 6 7 S 0

MISSION I)U ItAT1ON (IIOU IHS)

Figure 52. Simplex Processor Probability of Failure

89

CF"I

- - -. 92

-. --. 98)
1 10-8

I s ---. 96

_ _ _ _ / _ _ _ _ _ __"_ _ _ __,, . o-:)/ ". l11 .

" li/i' I ' "- -

/ I

CF: - 10_

CF COVERAGE FACTOR

1 x 10 - I
I

I x ,,0-12 _ 1II1
1 1 3 4 5 6 7 9 10

MISSION I)URATION (HOURS)

Figure 53. SDFTP Probability of Failure

90

VI. COMPARISON OF SDFTP AND SIMPLEX PROCESSORS

The Self -Diagnosing Fault-Tolerant Processor (SDFTP) provides "failed
op2 " fault tolerance. In comparison with the simplex design, which cannot
tolerate a fault, it is significantly superior -- especially for fault tolerant
applications such as flight control. Foi short missions, less than 10 hours,
it has significantly enhanced reliability compared with the simplex design.
Its failure rate for a two hours mission is nearly four orders of magnitude
less than the simplex design, as described in Section V.

Testability and maintainability of the SDFTP is significantly improved
over the simplex design since it maintains an error history and up-to-date
status of the SDFTP during the entire flight, which can be utilized to decrease
repair times. The incorporation of self-test programs, coupled with self-
checking checkers and partition interface scanning registers, significantly in-
creases the diagnosis capability since the error reporting is to a much finer
scale than it is in the simplex design.

In the performance and ease of application the two designs are com-
parable. The rate of instruction execution of the SDFTP should approach that
of the simplex design, provided that the processor control circuitry does not
entail large delays. Since the instruction repertoires of the two designs are
nearly the same, the ease of programming should be nearly the same. It is
intended that the SDFTP have some additional instructions to ease the recon-
figuration and recovery process.

Since the improved fault tolerance and reliability of the SDFTP is achieved
via redundancy, the SDFTP requires much larger resources than the simplex
processor. As listed in Table V, the simplex processor only requires 45
devices, ,.:ithout the microsequencer device) while the SDFTP requires about
4.4 times as many devices. Most of the additional parts are required to imple-
ment the triplication employed with the bit-slice processors and the RRU error
processing channels. The remainder are needed to implement the checkers,
partition interconnection devices and the dynamic redundancy control. In terms
of the number of different devices (parts count) the simplex processor requires
just 12 different devices, all of which are commercially available. In contrast,
the SDFTP is implemented with 19 different devices, of which four are special
designs, as shown in Table VI. Both the simplex and the SDFTP would benefit
from the special microsequencer device design, since it would reduce the sim-
plex parts count b'v six and the SDFTP count by 18. The microsequencer device
would also eliminate three different parts thereby reducing the parts types by
two. The SDFTP is much more extensively integrated than the simplex, with
nearly half of the devices of the LSI level of integration.

91

TABLE V

COMPONENT COMPARISON

OF

SIMPLEX VERSUS SDFTP

FUNCTION SIMPLEX SDFTP

BIT-SLICE
MICROPROCESSOR

LSI DEVICES 16 3(16)

MSI DEVICES 26 3(26)

SSI DEVICES 3 3(3)

TOTAL 45 135

CHECKERS

S.C.C. 21
(LSI)

RECONFIGURATION

VOTER-SWITCH 10
(LSI)

RRU

MONOLITH IC 27
MICROCOMPUTER
(LSI)

CLOCK 3

CONTROLLER

MISC. 12

OVER-ALL
TOTAL 208

92

TAtsLE VI

PARTS COUNT COMPARISON

SIMPLEX VERSUS SDFTP

SIMPLEX SDFTP

LS00 LSOO
LS 04 LS 04
LS 86 LS 86
LS138 LS138
LS151 LS151
LS158 LS158
LS 163 LS 163
LS 174 LS 174
LS253 LS253
2902 2902
2901 2901
5341 5341

S.C.S. WITHOUT MASK

S.C.C. WITH MASK

VOTER -SWITCH

C LOCK -CONTROLLER

8084

8243

8355

Storage requirements for the two designs are difficult to compare. The
simplex processor has nothing equivalent to the RRU computer-storage deviceE .
In the bit-slice processor area, the requirements are hard to quantify for the
reasons cited in Section IV. However, it is believed that, because the SDFTP
is partitioned into smaller circuit modules than the simplex processor, the
SDFTP can use smaller diagnostic programs than the simplex processor, with
higher coverage.

Another advantage of the SDFTP is the absence of a hard-core problem
since two replicas should be operable under the single fault-at-a-time assump-
tion.

93

VII. PROGRAM PLAN

It is recommended that a prototype self-diagnosing fault tolerant proces-
sor be built to demonstrate the concepts and techniques involved, and to indicate
the resources required for their implementation. This demonstration will indi-
cate whether the self-diagnosing processor has the ability to operate correctly
through the introduction of faults in the processor, and whether it can execute
the prescribed tasks in a timely fashion. These experiments will be designed
to demonstrate the following qualities:

" degree of tolerance

" comprehensiveness of protection

* responsiveness of error processing

* types of fault coverage

• compatibility with LSI implementation

The ability to protect the processor from both single and multiple errors, single
and double fault occurrences of the same fault without intervening repair, and
consistent and inconsistent types of errors will be demonstrated. The ease and
variety of fault insertion are important attributes because they allow the effective-
ness of the error detection, error location, reconfiguration, and recovery capa-
bilities of the processor to be readily exhibited. Thus the ability to display the
state and readiness of the demonstrator, as well as the fault history, are im-
portant considerations in developing an effective demonstrator presentation.

A. DEMONSTRATOR DEVELOPMENT PLAN

The recommended approach consists of a two-phase development program.
The objective of this program is to construct a demonstrator together with its
associated demonstration programs, which will show the operation of the self-
diagnosing processor under various conditions of fault. The first phase will be
concerned with definition and design specifications, and the experiments that can
be run on the demonstrator. The resulting definition will then be used to esta-
blish the requirements and specifications of the demonstrator. The self-diagnosing
processor will be built during the second phase, according to the specifications
arrived at in Phase I; the result will be a self-diagnosing processor and its asso-
ciated computer programs to demonstrate the capabilities of the processor.

1. Definition, Design and Specification Phase

The following tasks shall be accomplished during this phase:

Define Demonstration System

A plan for demonstrating the capabilities of the Sell-Diagnosing Fault
Tolerant Processor (SDFTP), including the experiments that are to be performed

94

to illustrate the features and range and extent of the fault tolerance desired by
the Air Force, will be developed. A functional description of the Self-Diagnosing
Fault Tolerant Demonstration System will be provided.

Design

Using the Air Force approved SDFTD plan the functional specifications
of the demonstrator, including processor design demonstration requirements and
principal interfaces, will be established. This task will have two distinct parts,
preliminary design and detailed design.

In the preliminary design work the Self-Diagnosing Design Techniques
Demonstrator (SDFTD), including the self-diagnosing fault tolerant processor
(SDFTP). will be designed to a level that clearly shows the technical adequacy
of the selected apjiroach and establishes the ability of the SDFTD to demonstrate
the fault tolerance of the processor.

This preliminary design effort will result in a SDFTP hardware devel-
opment specification that covers (1) all essential system functional character-
istics, (2) necessary interface characteristics, (3) specific designation of the
functional characteristics to key configuration items, and (4) tests that will
verify that the specified performance has been achieved. A Computer Program
Development (built to) Specification will also be written that describes in opera-
tional, functional, and mathematical language, all of the requirements necessar.,
to design the required computer programs in terms of performance criteria.

In the detailed design portion the SDFTD will be designed to a level
that clearly shows that all design requirements are satisfied, that the design is
essentially complete, and that the fabrication drawings are ready for release.
This work will culminate with a presentation of the detailed design to the Air
Force for approval. The SDFTD detailed hardware requirements will also be
developed during this part of the effort. These requirements shall be specified
in a hardware functional description that establishes the performance, design
and fabrication requirements. Design drawings will be provided to (,ood com-
mercial practice. The SDFTP computer programs will be described in a
Computer Program Product Specification that provides a summary of the pur-
pose and scope of the specification and a review of the major functions. The
requirements section will provide for a functional allocation description, func-
tional description, storage allocation, functional flow diagram, program in-
terrupts, and control logic description.

Program Plan

The Phase I report will include a plan for the implementation and
demonstration of the self-diagnosing processor designed during Phase 1. This
plan will include a description and schedule of the major events in hardware
and software construction, test and demonstration. Estimates of material cost,
labor by type, and schedule will be included.

95

2. Fabrication, Test and Demonstration Check-Out Phase

Working from the detailed design information developed in Phase 1.
the demonstrator will be built and the associated computer programs will be
written. The custom LSI devices that were designed during this development
will be implemented in small-scale integrated, SSI, and medium-scale Inte-
grated. MSI, circuit form. These devices, as well as those needed to imple-
mnen the remainder of the design, will be selected from commercially available
products. Layout and fabrication of the custom LSI devices is planned following
successful operation of the demonstrator.

Checkout of the hardware and the software are scheduled to proceed
concurrently, using available development systems. Integration of the hardware
and the software will be accomplished as the individual subsystems, programs
and routines are tested and checked out. The completely integrated demonstrator
will be tested to verify that the demonstrator performs as specified and the fault
insertion experiments can be successfully performed.

The proposed schedule for the development of the demonstrator is
shown in Figure 54. Significant milestones are also indicated. The definitive
plan and schedule for this second program phase will be refined at the end of
the Definition, Design and Specification phase as indicated in the Program Plan,
above.

96

Yeatr by Quarters

MILESTONE 1 2 3 4 5 6 7 8

I Definition,
Specification
& Design

v0 Define Demonstrator - Program Plan
Requirements V Functional Description

* Specify Demonstrator

Hardware Design Hardwire Development Specification

Hardware' Product Specification
Software Design Compulr Program Development Specification

Compute?' Program Product Specification

II Fabrication, Test
k, Demonstration

* Fabricate Demonstrator Construction Completion

* Hardware Checkout Tested Hardwre V

* Software Coding C umiji
KCheckout 4un nt

* Hardware-Software Interface : Integration
Integration Tests Compiete

* Program Verification Test _' Analysis Co1mplete

Demonstration Demonstration Check-outDevelopment9retn Tests Complete

I-... . .. - I - --

Figure 54. Proposed Schedule - Self-Diagnosing Design Techniques
Demonstrator

97

REFERENCES

1. D.A. Andersen, "Design of Self-Checking Digital Networks Using Coding
Techniques", Coordinated Science Laboratory Report R-527, University
of Illinois, September 1971

2. M. Diaz, "Design of Totally Self-Checking and Fail-Safe Sequential
Machines", Digest of the Fourth Annual Symposium on Fault Tolerant
Computing, pp. 3-19 to 3-24, June 1974.

3. R.W. Cook et al, "Design of a Self-Checking Microprogram Control",
IEEE Trans. on Computers, Vol. C-22, pp 255-262, March 1973.

4. D.A. Anderson and G. Metze, "Design of Totally Self-Checking Check
Circuits for m-out-of-n Codes", IEEE Trans. on Computers, Vol. C-22,
pp 263-269, March 1973.

98

APPENDIX I

DEFINITION OF BASELINE PROCESSING REQUIREMENTS

99

TABLE OF CONTENTS

PAGE

A. Introduction and Summary 101

B. Aircraft Flight Control 102

C. Multimode Radar Synthetic Aperture Ground Mapping 106

Addendum A - Control Surface Computer Processing Functions
and Sensor-Actuator Diagrams 121

Addendum B - Functional Listing of Instructions 127

Addendum C - Signal Processor Macro Listing 133

100

A. INTRODUCTION AND SUMMARY

Two airborne application areas were selected for the baseline require-
ments. These are airborn flight control and the synthetic aperture ground
may function of airborne multimode radar signal processing. Each application
is examined to determine its processor requirements, beginning with mission
identification and functional analysis leading to the development of the
algorithm flow. Performance analysis of representative tasks is described
and the resource estimates are developed in terms of memory, processor
speed, and complexity, as measured in terms of the variety of operations and
their corresponding execution rates.

The Flight Control Application is considered first in Section B since
it represents a set of requirements that falls within the realization capa-
bilities of existing LSI devices, such as microprocessors and memories, con-
figured in a single programmable computer structure. It is estimated that a
high performance control-configured, fly-by-wire aircraft would require less
than 16,000 words of 16-bit wide memory and could be controlled by a
processor capable of executing instructions at a 300 to 400 thousands of
operations per second (KOPS) rate. Because of the safety requirements of
this application, quadruple redundancy coupled with software implemented
redundancy management leads to a sophisticated input 'output system that
connects the electronic flight control system to the aircraft control sensors
and actuators. The reconfiguration approach is designed to achieve "failed
op-squared" fault tolerance for the electronics.

The second application, Synthetic Aperture Ground Map Processing of a
Multimode Radar, described in Section C results in signal processor require-
ments that are beyond the capability of current and near future single con-
ventional microprocessor designs. However, special programmable pipeline
processors and netted sets of microprocessors are believed to be capable of
achieving the performance required. As in many of the other radar signal
processing applications, the core signal processing function has the ability
to generate a doppler frequency analysis of the radar return. For this ground
mapping mole of the multimode radar, a processing rate in excess of
20x 10 9 complex multiplies is required in addition to a signal processing
operation rate in the 1-2 million instructions per second range. Compared
to the flight control application, the multimode memory requirements are
significantly larger and are estimated to fall in the 3.5 million bit range.
This storage is normally distributed throughout the signal processor and must
provide a high memory accessing rate capability, which is a function of the
specific radar mode and signal processor architecture.

101

B. AIRCRAFT FLIGHT CONTROL

This electronic flight control system combines contemporary ideas for
reconfiguration (transient fault recovery, computer self-monitoring) with
conventional hardware redundancy techiques in a basic quadruplex redundant
structure. With appropriate operating software, the system provides the
reliability and fault tolerance, which are typically characterized as "failed
op-squared" performance. In addition, the system automatically recovers
from certain transient faults, such as interruption of electrical power, and
reorders itself to obtain the highest available level of redundant operation.
A high performance control-configured vehicle (CCV), fly-by-wire (FBW) air-
craft and control surfaces are shown in Figure 1-1. Table I-1 is a summary
of the major aircraft functions with respect to aircraft safety criticality In
the following, we will be primarily interested in the flight crucial functions
since they are performed in the flight control system.

AILERION

TRAILING EDGE FLAP .- LEADING EDGE FLAPS

THROTTLE CONTROL
RUDDER

STAB~kATOft
EENOSWHEEL STEERING

BRAKE

RUDDER '- ' PARALLEL TRIM

STABILATOR LEADING EDGE FLAPS

.THROTTLE CONTROL

TRAILING EDGE FLAP

AILERON

Figure 1-1. Flight Control Electronic System Control Surfaces

Transformation of the operational criteria into design requirements
for a fault tolerant (redundant) digital computer system is arranged to
obviate single point system failures. The design must also meet the follow-
ing fundamental design requirements:

Each computer unit shall independently assess its, and the
system's,operational status.

No computer or combination of computers shall interrupt
another computer's normal operation.

102

The system's redundant operation must start up, and recover
from transient fault conditions without flight crew intervention.

* The system design must be able to achieve functional
operation down to a simplex string of operable elements
and be architecturally expandabl, to at least quadruplex
redundancy.

TABLE I - 1. FUNCTION SUMMARY FOR APPLICATION MODELS

Flight Crucial Funct ions Flutter Suppression

Structural Mode Suppression

Fly-by-Wire Control

Full-time Stability Augmentation

Flight Critical Functions Category III MLS Autoland

Noncritical Functions Track Angle Select Hold

* Flight Path Angle Select 'Hold

2D '3D 4D Command Generation

Air-Ground Data Link for ATC

Communication

(Above functions provided by
Na,.vy 'Guidance Computers)

Proceeding from these requirements, a software impleme led redundant
management approach leads to the inclusion of a reconfiguration process con-
sisting of failure isolation, transient fault recovery, and redundancy de -
gradation. The redundant channel processes are consolidated at two system
nodes : at the sensor signal input to the control law computations and at the
servo actuator output. The sensor signal selection process is mechanized in
software and the output voting node is a hydromechanical mechanization. How-
ever, the majority of the reconfiguration mechanism,, are software processes
designed to achieve system flexibility and adaptability. The hardware archi-
tecture, by virtue of its communication interconnections, is what makes it
practically possible to achieve the benefits of reconfiguration.

The computer unit is replicated on a per channel basis to build a re-
dundant (in this case. quadruplex) fault tolerant system. A processor and
all channel interface electronics are included in the computer unit. Sensor,
mode control and servo hardware interfaces are dedicated on a channel basis.
All cross-channel communication is accomplished via dedicated one-'way
serial digital data buses that independently interconnejt each computer to each

101

other, providing complete electrical isolation between channels. Each computer
exclusively controls the engagement and shutdown of its own servos. A block
diagram of an integrated navigation /guidance /flight control system is shown in
Figure 1-2. The assignment of channels and input /output electronics to the
computer units is shown in Figure 1-3. A more detailed view of a single
computer's sensor and actuator relationship is shown in Figure 1-4.

The control surface functions are pictured in Figures A-1 through A-9
in Addendum A. They are:

Stabilator Functions

Trailing Edge Flap (TEF) Functions

Leading Edge Flap Functions

Rudder Functions (Channels 1 and 2)

NON- FLIGHT CRITICAL
FLIGHT CRITICAL

COMMAND AUGMENTATION
NAVIGATION AUTOLAND
GUIDANCE NAV-GUIDANCE
DISPLAY GENERATION

CONTROL

AUTO CRU ISE AND Di ';PLAY AND PA; AMEER~
AUTO THRUST UWilT'SLTPALSOi,-CMN1

NON-FL I G I F
CR1 R T. IL AIterae ia Gdn Fit C r y

SESR C or- P -A') T A AT

A

A IE

J R I .T.. . I "C

Figure 1-2. Integrated Navigation/Guidance / Flight Control System

104

::,\N\LI

Ulili R(IL\NNI*:I

Figure 1-3. Flight Control Electronics Set

PLIGHJT CONTROL COMPUTER

SENSORS ACTOAIORS

STICK RORCE DIRECT El ECTRICAL LINK ILEO N

TrANDUU AND AILERAN
________ _____ -- SERVO ELECTRONICS RDE

PEDAL FORCE -- TRIM TRIM --
TRANSDUCERS [ELECT. ACTUATOR

____ -TCHL
MISSION I-.-____ to THROTTLE

LCOMPUJTER -j DATA BUS _
7ACK-UJP AIR I -IBI AO
LDATA SENSORS TA - - - -

-~DIGITAL Q_

ANGLE OF ATTACK 1 PRCSO0I LEADING
SENSORS U IIA E EDGE FLAPS

________* DIGITAL CAS

[RATE SENSORS >-RILN
EDGE FLAPS

ACCEI ERAIN- NOSE WHEEL
SE' NS ORS STEERI'JG

CONTROL PANEt ____________

Figure 1-4. Flight Control SYstcm

Rudder Functions (Channels 3 and 4)

Aileron Functions (Channels 1 and 2)

Aileron Functions (Channels 3 and 4)

Nose Wheel Steering Functions

Approach Power Control Functions

The interfaces between the computer software programs and hardware and
the rest of the flight control system are shown in Figure 1-5.

The set of representative control laws for a CCV 'FBW application are
shown in Figures 1-6 through 1-17. An overview of the individual pitch, roll,
yaw, flutter, and maneuver for autoland, go-around, and CCV/FBW is shown in
Figure 1-6. The individual control law diagrams are referenced in Figure 1-6
and presented in Figures 1-7 through 1-15. Sensor and mode control interface
requirements and servo and display interface requirements are shown in
Figures 1-16 and 17.

Processor resource estimates for a high-performance FBW aircraft flight
control system designed to meet the foregoing requirements are tabulated in
Table 1-2. The total storage requirements are approximately 13,000 16-bit
words of program storage and 1,300 16-bit words of data memory. The performance
needed is about 320,000 operations per second. These estimates are obtained
through sizing the application on a 16-bit flight control computer having the
instruction repertoire and execution times shown in Addendum B.

C. MULTIMODE RADAR SYNTHETIC APERTURE GROUND MAPPING

A multimode radar may have a number of modes of which the following
four are typical:

1) Medium PRF Air-to-Air Search

2) High Resolution Spotlight Mode Synthetic Aperture Radar
(SAR) Mapping

3) Non-cooperative Target Recognition (NCTR)

4) Terrain Following 'Terrain Avoidance (TFTA)

The associated radar signal processor should be capable of not only
processing each of the mode returns in real time but should be capable of
switching between any pair of modes in real time without hardware changes.

106

• t-. NL SYg

.,

iI

{g

"a s.a .- F, -..

.2.

Is

CO

.o. ...

.....'.'11 "'.3

B

Figure I-5. OP Computer Interface Block Diagram.

N :., .. ;.,..:,% 7 •... . -,.:.

" i i

N Co . , -. ,

-.-.. . . ,. , .

" . . "- .- . -1~

Block D~agram. 107

F JFAP TTERN

_AN,'< CAT

Fi ur 1 6 Ap li at o Contro Law L OveIie OjMNLY ,

I(X PI C I. FL I

I i; 1A7 FIG 18II N Fc 19 Fr11 FGII F ,,1 2 Fi,1 3 F ic v 1 j, 1

IN i t 1 ' I

VA IA1 I...All IA iIQ O q

DEVIA"II1N 01

sIc LLf1 j-j

'NL

~AAL

Figure 1-8. Pitch Autoland Control Law

B A -

01

AA

I..

Fi,-urt I- I i~ ur C I111. Go -Apondi Control Law wih Hod

I'RACK NGIA,

I'~W))ID

01111

1 1 I I ' T I r ,

6''

'-j
+_ I I'll] a ,Z l

" i'W
[till 1

+~ r'

Pi I'T! H' + 1 .i

Figure f-10. Go-Around Control Law

I I I

\I I I

Figu.\1-0. G-Arond Cntro La

\i ~~~~~I
1{ 1~ , \

"

II

J_ -

i 1 itch C A L -

\ ;I -,, j -_

II\ I I A

L 1.11

I ~ I I \1 1)

S(I i

jr l (;AIN

Figure 1-14. Maneuver and Gust Load Alleviation Control Law

IIT A~ I I I it(______

I I

'A 1\ (i II
Il I.C+

"I' ILN)I

IIY I ItI A

ACl I E I.II'I()N NM N)

Figure 1-15. Flutter Suppression Control Law

113

FOCKPIT i [', 101 HDCDFKL

CONTROL OL

$ LRVO F LLEbAC

(FITLH

I)E P[R LWvR RUDJ I
Pfis ION R, L AI LE[RON

j OTR 01 POILI

P WINGTIP OTO
R "E U APPRI 55CI

I IU Il T7 'R E PP 100 N)

6CE EI E (E'W I T!')********* 'fVA(- WIFEE

ML

~>I SE RIA, I I[

S1 SERIALE LINE

NAV -U I DANCE C()MP

1 SICRIAL LINE

12 X 28 VDC ETISCREILS
TOTALS 42 X 26VAC 2 WIRE

4 SERIAL BUSES

Figure 1-16. Sensor and Mode Control Block

11/4

1o) :) !RtE) ;'LAY~~

P I A, 1 [C

i ,-Ri T;

JJPCI4TIL

1f T , I t RP k1r.I-T (TE)P FTT I ii

'r q

I~ ~V DISCR T P pAM

2 ER IAL W SIS ' A-
NA,- I :,AN(I (lMP

Figure t-17. Serv.o and Display Block

TABLE 1-2. MEMORY AND TIMING ESTIMATES

Program Memory Data Memory Execution Rates
Function (Words) (Words) (KOPS)

1. Executive 1400 190 24.00

2. Input Signal
Management 1500 309 103.60

3. Control Laws 4500 500 176.00

4. Outer Loop
Control Laws 700 100 8.00

5. Actuator Signal 1000 50 4.00

6. Built-in Test 3000 100 *

7. Data Management 800 50 4.00

Total 12900 1290 320.40

• Not applicable - either background or offline.

In all air-to-air and air-to-ground modes except TFTA, the underlying
processing principle is a doppler frequency analysis of a coherent radar
spectrum. Consequently, a fully coherent radar has many of the features
needed in a multimode radar. However, the exact processing functions and
sequence of operations differ substantially in the various modes. In the air-
to-air modes, 'he processor is prinarily concerned with the rejection of the
ground return spectrum to allow detection of a comparatively weak return
from an airborne target. In the high-resolution air-to-ground modes, the
processing task requires a high-resolution development of the ground return
spectrum into its doppler components from which a map can be generated.

The radar synthetic aperture (SAR) mode has been selected for signal
processor sizing. Its block diagram is shown in Figure 1-18. The beginning
of the algorithmic flow is the sampled and quantized video developed by a high-
speed analog-to-digital converter. The converted data are presented in bursts
and temporarily stored in a buffer memory as shown in Figure 1-18. After the
burst has been captured in the buffer, the data rate is downshifted and all of

116

r/l FII 'I) :IlId:lMM < :'lJ [rNX I;\', \ I II I P r'J t '

-$ \~~~r I N I ['[SA P1 '
-i I~lI" N IL\L)\ ;)\ I'\ [+Il(OI NrlI

Figure 1-18. SYnthetic Aperture Radar Signal Processing

the remainder of the processing for this burst is accomplished in the remaining
pulse repetition rate interval. This additional processing includes presunming
and motion compensation using data supplied by the radar data processor. This
is followed by two-dimensional transformation of the data and, finally, by post-
processing. Because of the variety of missions and tasks that can be anticipated,
and because the signal processor is part of a multimode radar processing string,
the signal processor must be programmable.

The following implementation assessment is based on the low cost, real
time processor for SAR* systems having a 5 KHz PRF and producing a
512 512 point map. The more detailed consideration of he operation of
individual blocks of the signal processor begins with the input buffer.

Buffer

The function of the buffer memory is to downshift the high-speed input
data to the lower speed of the rest of the radar signal processor. The serial
delay line buffer receives 80 MHz complex samples of two separate antenna
polarizations. Each of these samples is quantized to one bit in both the
I and Q channels. A total of 2048 pairs of complex samples is serially stored
in four separate delay lines, one for each pulse burst. Subsequently, this
stored information is serially shifted out to the presummer at a 12 Mttz rate.

Presummer

The function of this unit is to select the range samples nearest to the
desired r'nge cells and weight them in proportion to their closeness to the
cori'esponding azimuth cell before summing them. The presummer process-
ing sequence, shown in Figure 1-19, initially stores the incoming data in a
set of latches. The next step is to multiply the data by a stored reference
value and add a previous value based on attitude information supplied by the
radar data processor. Data thinning and compression are achieved by
ignoring undesired sample data inputs and by reducing the output to 4-bit
complex words consisting of two bits of I and two bits of Q channel data. As
a consequence, the output data r.te has been reduced to 1 MHz and, the data
handling shifts from serial word processiig to block processing of data arrays.
Thus, storage can be centralized to a bulk working store rather than being
distributed in a number of memories located in the individual processing
functions.

AFAL Phase I Report on Contract F336 15-C-1167

IIJ

lit~, I F I ti ld 1 1 ' I ' i

li ['II F l k I \11 1)!;

INFMC I' I.\

k0\ 1 IU)\ J(~'" S I

Figure 1-19. Presummer

Vector Processor

Compensation for aircraft motion is achieved through multiplication of
all of the points by a two-dimensional array. This array is obtained from the
radar data processor, which uses aircraft attitude system information to
generate the array values. Between one million to a million and half complex
multiplies are required to make these corrections.

Two-Dimensional FFT

The two-dimensional transformation of the radar map is done in two steps.
First, the ground map is transformed in the range direction by transforming
512 points from each of the 512 azimuth lines. After the range transformation
has been completed, 512 512-point transforms in the azimuth direction are
executed. These transformations include a computational load of about 6 - 106
butterflies per second on 16-bit complex data, having 8 bits of [and 8 bits of
Q. Intermediate storage requirements led to the addition of a 512-word memorv
capable of storing complex data in addition to the use of the bulk working store.

Post Processor

The Last major functional unit in the algorithmic flow determines the
magnitude of the complex data transform outputs and integrates the resulting
array. The 512 x 512 point maps require about a million and a half operations
per second on data ranging up to 16 bits.

The total SAR ground map signal processing requirements are summarized
in Table 1-3. These results indicate that a high throughput processor, which
achieve execution rates in excess of 20 MIPS, is required. Although a
large bulk memory can be employed, there is a'so a requirement for a number
of smaller distributed RAM memories. Most of the storage is operated in the
random access mole. The input buffer is likely to be implemented most
economically in delay-line form. These estimates are based on a processor
capable of performing the macro instructions listed in Addendum C.

V!'

TABLE 1-3. SAR PROCESSING RATE AND STORAGE REQUIREMENTS

Storage
Function Name Processing Rate (Bits)

PRF Buffer and 6
Presummer 6 x 10 complex multiplies 32.0K

Vector Processor 6
(Motion CompensatIon) 1. 5 , 10 complex multiplies 4.0K

FFT (2) 12 x 106 butterflies sec 8.0K

Bulk Memory 2 , 106 transfers sec 2.5M
Post Processor 1.5 106 operations see 64K

Total 20 10 6 complex multiplies

2 106 MemorV
accesses see 3. 5M

1.5 MIPS

1!l

ADDENDUM A

CONTROL SURFACE COMPUTER PROCESSING

FUNCTIONS AND SENSOR-ACTUATOR DIAGRAMS

1 '~~

D ISC 4ETES LT 1.T

sicEN SERVO ACTUATOR

PTHRT CTsicCURN ELECT.

9mMOM?-T SERVO

4 RAM

PITCH(

CTROLL

OM I UTATION.

STAB RT

SIG
E 0SA

ROLL FORCE INPUT MOKITFT1
1 AUTO

Figure A-1. Stabilator Functions

F -4 4

CI

TEP iCEE TEF - 0 TEF

ACTUATOR -SERVO _ACTUATOR

SIGNAL1 CURRENT ELECT.
MANAGEMENT--

EV

RAM

AOA TRAILING

EDGE FLA P

PITCH RATE COMPUTATIONS

PITCH GAS4

AIR DATA _,1

ACTR. TE F

DIGITAL PROCESSING SECTION

Figure A -2. Trailing Edge F lap ' TE F) F unctions

A 0 AIF. LEFLE F
PITCH LEADING A TUA SRO -ATAO
RATE EDGE FLAP TOR CURRENT' ELECT.

AIR DATARA

POSITIO TrO

A ND
.OCIC

fC UTBOC)ARr NT

LEF WN
POS ITION

IGITA I. PROCESSING svICIhN

FiueA-3. Leading Edge Fla11 (LEF) FuflCtioInh

FORCE

1)101 TA I.i'0 ESIC S CT

123R

URPI I

l Al I Z A'.1

DIR13ECTIONAL1

CONTROL
COMIPUTATI!ONS

Figure A-5. Rudder Functions

ROLL,. AILERON I C, FA 11,

FORCE ANA LOG DETET

D)EL
fC

P
FR M (I Ilip

(:IA NNII

I.OG1A ILC R I I,'

INPUTc AILRO AILERONFutin

4 /

ROL,[, 1 Al. i

FLOTE CF A!CI _____ !KC:ACr

IFP

RO L. I.C ~ ii\

s m'

CM T

!'A! -A

FILUZC \ ~ . C-' h'1SeirnBFntus

125v

14

THROTTLE
FORCE --"

AQA

PLCAS CONT~RiOL ;(;IL

N z COM I VTA - MGMT RV
TIONS EL.ECTRONICS SF NyC)

A Ilk
DATA FAI

1) HTF' C T SOV
RELA Y

C4 0
0.

THROTTLE
FORCE

CONTROL I G
COMPUTA - MTPLC T

TIONS , SERVO IIIC
ELECTRONICS SERVO

1) 1- TEC TSO V
RELAY

Figure A-9. Approach Power Control Functions

126

ADDENDUM B

FUNCTIONAL LISTING OF INSTRUCTIONS

127

LOAD 'STORE INSTRUCTIONS

Mnemonic Instruction Description Execution Ti me

LDU Load UR from Program Memory 2. 0

LDUS Load UR from Scratchpad Memory 1. 5

LULB Load UR (Left Byte) Immediate 1.25

LURB Load UR (Right Byte) Immediate 1.25

LDL Load LR from Program Memory 2.0

LDLS Load LR from Scratchpad Memory 1. 5

LLLB Load LR (Left Byte) Immediate 1 .25

LLRB Load LR (Right Byte) Immediate 1.25

LDA Load XA from Program Memory 2.0

LDAS Load XA from Scratchpad Memory 1. 5

LALB Load XA (Left Byte) Immediate 1.25

LARB Load XA (Right Byte) Immediate 1.25

LDB Load XB from Program Memory 2.0

LDBS Load XB from Scratchpad Memory 1. 5

LBLB Load XB (Left Byte) Immediate 1.25

LBRB Load XB (Right Byte) Immediate 1 .25

LDC Load XC from Program Memory 2.0

LDCS Load XC from Scratchpad Memory 1.5

LCLB Load XC (Left Byte) Immediate 1.25

LCRB Load XC (Right Byte) Immediate 1.25

STU Store UR into Program Memory 2.0

STUS Store UR into Scratchpad Memory 1 .75

STLS Store LR into Scratchpad Memory 1 .75

STAS Store XA into Scratchpad Memory 1.75

STBS Store XB into Scratchpad Memory 1.75

STCS Store SC into Scratchpad Memory 1 .75

128

ARITHMETIC INSTRUCTIONS

Mnemonic Instruction Descripti on Execution Time-

ADU Add to UR from Program Memory 2.0

ADUS Add to UR from Scratchpad Memory 1.5

ADBU Add to UR (Right Byte) Immediate 1.25

ADBL Add to LR (Right Byte) Immediate 1.25

ADBA Add to XA (Right Byte) Immediate 1.25

ADBB Add to XB (Right Byte) Immediate 1.25

ADBC Add to XC (Right Byte) Immediate 1.25

AMS Add to Scratchpad Memory from UR 2.5

DIV Divide UR & LR by Program Memory 10.75

DIVS Divide UR & LR by Scratchpad Memory 10.5

MPY Multiply UR by Program Memory 6.0

MPYS Multiply UR by Scratchpad Memory 5.75

SBU Subtract Scratchpad Memory from UR 2.0

SBUS Subtract Scratchpad Memory from UR 1.5

REGISTER INSTRUCTIONS

Mnemonic Instruction Description Execution Time

ABSU Absolute Value of UR 1.25 - 1.75

CILB Clear Indicator (Left Byte) Immediate 1.25

CIRB Clear Indicator (Right Byte) Immediate 1.25

CPLU Complement UR 1.5

INV Invert UR 1.25

SILB Set Indicator (Left Byte) Immediate 1.25

SIRB Set Indicator (Right Byte) Immediate 1.25

TSU Transfer SR to UR 1.25

TUS Transfer UR to SR 1.25

XUA Exchange UR and XA 1.75

XUB Exchange UR and XB 1.75

XUC Exchange UR and XC 1.75

XUL Exchange UR and LR I. 75

I, '3

INPUT /OUTPUT INSTRUCTIONS

Mnemonic Instruction Description Execution Time

CLR Clear Device Controller 1.25

CLRI Clear Interrupt Specified 1.25

ENBL Enable Interrupts from Device 1.25

INHB Inhibit Interrupts from Device 1.25

SLZ Shift UR Left - Enter Zeros 1.25 + .25(n)

SLZD Shift Double Left - Enter Zeros 1.25 + .25(n)

SLZX Shift Double Left by XC - Enter Zero 1.25 + .25(n)

SRC Shift UR Right - Circulate Bits 1.25 + .25(n)

SRCD Shift Double Right - Circulate Bits 1.25 + .25(n)

SRS Shift UR Right - Repeat Sign 1.25 + .25(n)

SRSD Shift Double Right - Repeat Sign 1.25 + .25(n)

SRSX Shift Double Right by XC - Repeat Sign 1.25 + .25(n)

SRZ Shift UR Right - Enter Zeros 1.25 + .25(n)

SRZD Shift Double Right - Enter Zeros 1.25 + .25(n)

DOUBLE PRECISION INSTRUCTIONS

Mnemonic Instruction Description Execution Time

ADD Add Double from Program Memory 3.0

ADDS Add Double from Scratchpad Memory 2.5

ADMS Add Double to Scratchpad Memory 4.25

LDD Load Double from Program Memory 3.0

LDDS Load Double from Scratchpad Memory 2.5

STDS Store Double into Scratchpad Memory 3.0

SBD Subtract Double from Program Memory 3.0

SBDS Subtract Double from Strachpad Memory 2.5

ABSD Absolute Value of Double Register 1.25 - 2.25

CPLD Complement Double Register 1.75 - 2.0

ZRD Zero Dobule Register 1.5

NRM Normalize Double Register 2.0 + .25(n)

130

i - -l-i-

LOGICAL INSTRUCTIONS

Mnemonic Instruction Description Execution Time

NDU And to UR from Program Memory 2.0

NDUS And to UR from Scratchpad Memory 1.5

ORU Or to UR from Program Memo,.r 2.0

ORUS Or to UR from Scratchpad Memory 1.5

CBSP Clear Bits Specified by Bit Mask 2.75

SBSP Set Bits Specified by Bit Mask 2.75

SKSP Skip on Bits Specified by Bit Mask 2.0 - 2.25

BRANCHING INSTRUCTIONS

Mne m onic Instruction Description Exe cut ion T i me

DSSZ Decrement and Skip if Scratchpad

is Zei-o 2.5 - 2.75

JINT Jump to Service Interrupt 8.0

JMP Jump Unconditional 1. 5

JMPI Jump Unconditional, Indirect 2.0

JMS Jump to Subroutinc I . 5

JMSI Jump to Subroutine, Indirect 2.0

JSNS Jump After Device Sense 2.75

RTN Return from Subroutine 1. 0

RINT Return from Interrupt Routine 5.0

SIE Skip if Program Memory Equal to Ul 2.0 - 2.2

SISE Skip ii Scratchpad Memory Equat to U.iR 1.75 - 2.0

SIG Skip if Program Memory Greater
than UR 2.0 - 2.2

SISG Skip it Scratchpad Memoiv Greater
than UR 1.75- 2.0

SIL Skip if Program Memory Less
than UR 2.0 - 2.2

31SL Skip if Scratchpad Memory Less
than UR 1.75- 2.0

SKLB Skip on Indicctor (T-eft Byte) Immediate 1.25 - 1.5

SKRB Skip on Indicator (Right Byte) Immediate 1.75 - 2.0

SKR Skip if Device is Ready 1.75 - 2.0

1"31

ADDENDUM C

SIGNAL PROCESSOR MACRO LISTING

133

REAL VECTOR OPERATIONS

Vector Clear

Vector Move

Vector Negate

Vector Add

Vector Subtract

Vector Multiply

Vector Divide

Vector - Scaler Add

Vector - Scaler Multiply

Vector - Signed Squared

Vector Absolute Value

Vector Square Root

Vector Logaritm (Base 10)

Vector Natural Logarithm

Vector Exponential

Vector Sine

Vector Cosine

Vector Arctangent

Vector Arctangent of (Y 'X)

Sum of Vector Elements

Sum of Vector Squares

Dot Product of Two Vectors

Vector Float

Vector Scan and Scale (Fix)

1 14

VECTOR MAXIMUM MINIMUM OPERATIONS

Maximum Element in a Vector

Minimum Element in a Vector

Maximum Magnitude Element in a Vector

Minimum Magnitude Element in a Vector

Maximum and Minimum of a Vector

Maximum and Minimum Magnitude of a Vector

Vector Maximum (of Two Vectors)

Vector Minimum (of Two Vectors)

Vector Maximum Magnitude of Two Vectors

Vecto' Minimum Magnitude of Two Ve',trs

VECTOR FILTER OPERATIONS

Vector 0 l)ln om ial Evaluate

)ifterence Equat ions

4 Pole Flilter (I)ifference Equatit)n)

COMPLEX VECTOR OPERATIONS

Complex Vec('tor Multitplv

Complex Vect or Reciprocal

Complex Vect'r Magnitude (Square)

Rectangular to Polar Conversion

Polar to Rectangular C onversion

MATRIX OPERATIONS

Matrix Transpose

Matrix Multiply

Matrix Multiply ()imension 32)

Matrix Inverse

Mat rix Vector Multiply (3 . 3)

Matrix Vect or Multiply (4 - 4)

FAST FOURIER TRANSFORM OPERATIONS

Complex FFT

Real FFT

Scrambled to True Order FFT Passes

Bit-Reverse Order an Array

Real Transform Unravel Pass

SIGNAL PROCESSING OPERATIONS

Convolution (or Correlation)

Wiener-Levinson Algorithm

Bandpass Filter

Power Spectrum

Complex Cepstrum

Inverse Complex Cepstrum

Schaffer's Phase Unwrapping

1 36

APPENDIX 11

DESIGN GUIDELINES

1 37

The attainment o)t a ich ahie self -diagnosing design necessitates that
faults be deteoted when the'; OtCCLIr Subsequent iv. the errors produced
by the faults must he i tasked or the fault v unit should be removed frmim the
s i Lcnal chain and replaced wvit It an operat ional equi valent.

A knowledoe ()I the error c'haracterist ics is necessary in order to detect
tlese errors. This st tiidv is conce r'ied wvith ile errors Produced by integrated
sem iconduct or circuLits; par't iculark' large scale integrated (1ST) Circuit
dlevices utilized in processor-s, which includes memorx' and microprocessor
dev'ices. These LS I device errorm characteristics di fferi from earl ier', smaller -

saedevices in that one or, more tau Its max' produce one or more err'ors.
Wan-- and Lox'elace 1 pi (sent (data tHIt Indicate that single hit etrrors for
nienorx' devi ces mav represent onIx' 75-80'(of thle total error' population.
Their work als) indicrates that t he colpo)S it on of the failure popu lat ion has a
signi ficant effect on the reliahil ity Consequent v, err'or protection techniques
have been required to handle hot h single and multiple stuck -at faults. Furt her'
attempts at ('haract erizinc. the error' modes have been unsuccessful, pri niarilv
because of insufficient data on available 1.51 devices. This is due, in part,

o thle recent mnt roduLct11 ion oItiany of the parts, but also to the relat i ye v high
obsolescent r'ate of' some of thIese devi ces , Such as random -acc'ess meniory
(RANI) and read -only meni or' (11GM) devices. The net result of this condition
is that the nu mbert ol errits that must be accommodated c-an vary bet ween a
singl_,e error I(o the ent r te set Of outputs o)I' i11tut s that are related. such as
ill (of the outputI Of a l))i1't . Th11 isode'l then results in the elimination of nian~v
other'wise valuable techniques.

Thle s('I -diitosti ,to't u th'len, be ale to) d etect Mult iple
tnt ernal er'i'ors4 and (jelt itt tf till, Imorali m ()t the Iai lture withi sufficient

reslutonso that tihe substiquefit muatotenance ac'tion is qluick and
effective. This appro(ach ha,, hc adataeo:

1) Easy err i-l d(et 'thot, since the ei'ror)IS ar e dek ('ted
(usually) upoti tilot m tii t)ct'ui'i'ence . The operation
id the proc-essor- in the, tailed state is considered durine,
h le (esi,_n.

2) Automatic rletect tot kI a Ltigt, pei'cenlte of errors.
Few unclt e l I o t)I- ito in .

3) 'Simple, fast d(1tgnsI. due t IbIuilt -in eri'ol' detect ion.

4) %loi'e effect ive liandlinc, of inconsistent errIors, Such
as inter'mittent s and tr'ansients. Dia~jnosis is Initiated
mmlledatI ely l)(tn det ect ion (of the eri''

I Wimn,-,, S .C. , Lmtyclacv' K.,' "I til) ilent of Men'Tlorx' lelabilily bh' Sinle
Bit E rro r Cor'rectioil" CONCON -7.

5) Manual maintenance is simplified, computer maintenance
costs are reduced.

Fault detection techniques have been emphasized because of the poor
reliability of systems possessing less than complete fault detection. For
systems based on standby principles, Losq2 has shown that the coverage
affects the reliability in two ways -- it reduces the maximum reliability of
the system and it modifies the shape of the perfect coverage reliability curve
by a fact or of

exp (- X (1-c)T),

where

X failure rate,

c coverage in percent, and

T time interval

The price of increased fault tolerance obtained through the commitment
of additional hardware resources is an increase in failure probability due to
these added resources. Techniques that provide reliability enhancement and
self-diagnosis are particularly effective for these applications provided that
the maintenance intervals are short compared to the system MTBF.

The resulting guidelines should

1) provide computational capability that is consistent
with the previously identified baseline processing
requirements,

2) provide a modular processor architecture that is
adaptable to changing requirements driven by either
changing mission or variety of application requirements,

3) match the 1977 technology and maint n flexibility
with respect to anticipated improvements in the state
of the art.

2 Losq, J., "Influence of Fault Detection and Switching Mechanisms on tie

Reliability of Standby Systems", FTC 75

Il9

II. REVIEW OF REI.I ALILITY TECHNIQUES FOR LSI DEVICES

There are two basic techniques for self-diagnosing systems with aut, .e
detec!tion:

1) The informatioa si ,lals of the svstem are encoled in
such a manner that the signalis form a co-le word in an
error detecting correctin (ode under fault-free eon-

ditions. When a detectable fauh occurs, an error is
produced that is a non-cole word. An example Of a
single eri.or-d et.ecI i:4 (ole is replication wv ith (orn -

parison %oting.

2) Periodic diagimosis ot all modules for error detection.

BY itself, the secOnCd techin ique is no! recommended for fault d la llO.-; is
beca.use:

1) Inconsistent errors may not be detected and their effect
on the state and data base of the system cannot be pre-
dicted.

2) Rollback restart snapshots of the state -of-the -machine
requirements are i."equentlv no! consist ent with real
toine apl)lications.

3) I)iagnost ic t(,o lee pol uc i tesI v ee ()r s f or nm IipIe
t:-ilts '1nd errors are oili \ l(e)a fii', eloped mI ilhe
taut It lo tion accuearV is (JIln ' S nS'pec .

Coni)inat ions of these two basic approtches are also atiliz-d and ,viii
be discussed . The periO 'lic .approach viii meost likelv be the Itasis Of the
manual diagniosis that supplements the automatic on-line error detection and
locates the failed component to the self-diagniosing processor replaceable
module level. Thus, tile overall maintenance action is a combination Of tlhe
spattial redundancy of tle coding appro.ch and the ten poral redundanc\ if the
periodtic diagnosis.

1. Coding Techniques

The simplest codes are those of replication combined vit h a form of
comparison. Duplication with comparison is perhaps the simplest error
detecting technique. In this te,"hnique, two independent sYstems col)ule tlhe
same function and the results are compared to detect differences. When an
error exists, tile 1esults of the independent systems will differ and ihe
comparison will detect the difference. The comparison can usually provide
location information (identify the hit location) if desired.

1 '. (

The simplest error correct ing techniique usMng1 c 'di o, il,)lve.- the use (if
triplication. In this technique, three independent systems compute
the same function and the output is the majoritv function of the results ol
the three systems. This voting of the output is performed on a signal-by-
signal basis and the effect of single errors is masked. Such systems are
commonly designated as triple-modular redundancy (TMR). As in duplication
with comparison, location information can be derived.

Extension of the :tegree of replication beyond three has been labeled
N-molular redundaney (NMR), where N modules are used to execute the same
function and (N-i) 2 or fewer failures are masked. The majority function,
which produces the output, has N inputs and a threshold equal to the largest
integer ,reater than or equal to N 2. As with other replication schemes,
location can be derived at the cost of additional resources.

Variations of the replication code include systems that both correct
errors and locate the source of the error. As errored modules are
identified, they are switched out of the system and replaced by standby
modules. When insertin' the standby modules into the system, any internal
memory must be initialized.

Another variation is an adaptive technique, where the threshcld of the
majority function is reduced as errors are detected and the offending module
is switched out of the system. Initially, the threshold is set to N 2: then.
as errors are detected, the threshold is lowered to (N-1),2. (N-2) '2, (N -3,2
and so on, until the number of modules is reduced to two or three.

2. Conventional Coding Techniques

Conventional coding techniques have been developed that detect and or
correct errors, Only ;m subset of aM the coding techniques is of interest
for this study. This subset is useful for checking computations and is usually
restricted to binarv codes or codes that are closely related to them. A
successful utilization of computational coding techniques in self-diagnosing
systems depends largely on the nature of the function to be protected by the
code. Hence, after an initial general discussion of codes, the effectiveness
of coding techniques will be considered with respect to the memory, processor,
control, and internal buses of a self-diagnosing processor.

The computational codes that were considered are the linear block codes,
the arithmetic codes, and checksum codes. Hamming and parity and b-adjacent
codes were the linear block codes specifically evaluated for transmission and
storage. Arithmetic codes were examined, primarily with respect to
arithmetic operations, although their use for the protection of storage was
examined. So-called low cost codes, as defined by Avizienis 3 , received most
of the attention. These include the AN and residue codes. The b-bit byte
checksum codes examined were those having a check symbol of the form 2 b .

3 Avizienis, A., "Digital Fault Diagnosis bv Low Cost Arithmetic Coding
Techniques", Proc. Purdue Centennial Year Symup. Information
Processing, 1:81-91.

Application of these techniques to large-scale integrated logic circuits
has not generally been successful in the sense that the implementations
were low cost. There are a number of reasons for this: first, for devices
such as a microprocessor, there is a mixture of structures and operations
that the code must span if it is to be applied external to the device. Since the
codes, in general, are matched to the structure and operation, this method
of attack leads to difficulties that are still unsolved.

If the coding techniques are applied within the device, the size of the
chip must be expanded and the number of pins increases unless the pin can be
time shared. Generally, this is not possible. Applying coding techniques
within a device of the s;z,, of a microprocessor at the register-to-register

level leads to a redesign of the function and usually necessitates an increase
in chip size. Since these LSI devices are already it or near the current
state -of-the -art in integration, the increase in chip size results in a loss
of yield, which, already, is relatively low at least compared to small-scale inte-
gration (SSI). Since the coding techniques examined thus far result in an
increase in circuitry ol at least twice the original device, the application
of coding techniques results in nnec Momical designs because of the low vield.

The second major source (if difficulty in applying coding techniques to
hIghly integrated devices is the lack of good error models that relate faults
and errors. As indicated in the Introduction, it is believed that single stuck-
'at fault modeling restults in insufficient fault coverage. It has been shown
that the effectiveness of the error detection is very sensitive to coverage,
particularly in the range of interest for self-diagnosis. Hence, it has
been deci ed that multiple errors must be considered. Implementation
costs of multiple error codes in the range of four to eight bits has been
found to rise rapidly. Even for the so-called unidirectional faults 4 , the
implementation costs increase significantl and the computational delays
increase with increasing word length.

As will be seen in the application of redundancy techniques to the
various functional units of a pro(essor, most redundanc v techniques that are
theoretically interestin iare only applicable at the component level. Technolo,,v
constraints at the LSI level of integration tend to dictate that redundancv should
he applied over chips not within the co:tkponents of chips. Hence, relatively
few redundancy techniques remain relevant . Consequently, architectural
considerations are of primary importance in the design of a self-diagnosing
proces-',w. Recovery from the fault, beginning with the processing of any
locat 1 'orrnution through, possibly, the restoration of the processing and
redundah. the major iss ue. As will be seen, however, a number of these
redundancy i-hniques, originally intended for low-level application, form
the basis for enhancing system reliability.

4 All components of tie errmr value have the same sign. That is, the onlv
erroneous bits are either I's changed to O's or O's chganed to 1's but not
both.

1 /+2

3. Processors

Bit-slice microprocessors such as the AMD 2901, in contrast to mono-
lithic microprocessors, allow the use of redundancy techniques at a lower
level and, therefore, are better candidates for redundancy techniques. Both
arithmetic and parity prediction techniques have been successfully applied
to arithmetic operations and can be effectively used for the protection of the
microprocessor arithmetic logic unit (ALU). But these techniques do not
check logical operations. Of greater consequence is the fact that low-cost
coding techniques for checking logical operations for error detection have
not been discovered. It is .,enerally accepted that the simplest error
detecting codes for logical operations amount to duplication. Previous imple-
mentations of error detecting designs frequently resorted to duplication.
Variants of these codes have been developed for ripple carry arithmetic units
and carry look-ahead designs in which the carry circuits are disabled. For
bit-slice microprocessors similar to the 2900 series, which incorporate byte
carry look-ahead, the effect of incorporating these arithmetic coding techniques
is significant. High-speed arithmetic structures, using cascades of 2901's and
one or more special carry look-ahead devices, can be implemented. Speedup
techniques such as these considerably increase the execution speed (,! these
structures compared with ripple-carry techniques, particularly for long words.
Addition of this code circuitry to the microprocessor and the high-speed carry
look-ahead would reduce the execution speed of the microprocessor and,
possibly, the high-speed carry look-ahead. Also, larger chips would
be required to implement this additional circutiry barring the use of higher
density fabrication techniques. Hence, this development was not pursued
farther.

Alternatively, the logical operations can be removed from the ALU and
implemented separately. But this approach suffers from increased delay
penalties as well as the increased implementation costs cited. Implementation
of the logic execution circuitry external to the microprocessor suffers from
the difficulty that one or more of the operands must come from the micro-
processor's register file through the output port. This increases the execution
time for single-register file sourced operands and, probably, would double the
cycle time for two register file sourced operands. Thus, this approach was
also not recommended.

Instead, it was concluded that for a self-diagnosing computer, repli-
cation offered the best trade-off in terms of protection and implementation
and execution time resources for the current state-of-the-art of integrated
circuit technology. Conventional coding techniques were less effective for
the multiple error case, when applied to the highly integrated LSI devices,
than the single error case associated with the mdeium and small-scale inte-
grated circuits.

For mono!ithic microprocessors, replication appears to be the best
solution. As will be seen, after memory and bus functions are examined.
TMR is believed to be the best general solution for monolithic processor
applications.

4. Memory

Conventional coding techniques are much more favorably applied to
memory functions than processors. Part of the reason is that coder decoders
for arithmetic and arbitrary logic are just about as complex as the function
they are protecting. But this is not rue for memories. For instance, the
encoder decoder for a 4K by 29 bit "word memory5 can be realized for about
7' of the simple memory resources. In addition, semiconductor LSI memory
devices have developed in such a way that manv of the problems associated
with other memory technologies have been eliminated. Addressing errors
are confined to a single chip under the single fault assumption by including
on each chip its own decoder, along with the read and write amplifiers and
read write control circuitry.

The evaluation of the implementation requirements of codes for the
protection of memory is primarily concerned with three major contributors:

I) The number of redundant or check bits that must be added
on a per word basis.

2) The complexity of the associated encoders and decoders.

3) Additional delay incurred as a result of adding prote(
tion devices since these delays usually increase the
address and or the cycle time of the memory

WensleY, et al , discuss the bounds on redundancy codes properties
of Hamming, Hong Patel, Abramson, and Gilbert codes that almost achieve these
bounds, and the performance of these error correcting cole,,. The lower
bounds for the number of redundant digits, r, as a function u: the nvmL- of
information bits, k, are listed in Table 11-1 which is taken from Wensle, 5 .

The bound varies with t he number ,ii bur4 , cw, hits in a protected byte of
width b, and the tvpe of cote. The. s CluMIns list the number of digits
required for cyclic burst hi nary ,e and Ihe S, columns list those for the
single byte correcting codes. (Note that r ill !AIs is equal to b multiplied by
the entry in the appropriate coin mn , ei hr S tr S) Hamming codes, with
b I and the Hlong Patel codes fir h 2 and ci -'ve, the redundancy implied
by the entries listed in the S cdunmns.

An indication of tihe decoder oinpi exitv for a p.trticular cellular decoding
scheme for generalized 1am ming codes discussed hNw Wenslev in (5) is presented
in Table 11-2 for a 24 bit word mei rv ()t 4(J9 i %. ird N. lr ,nil.c (-fip 5 ize is
maintained at 4096 1w configuring the chips as tollows: (1 bit wide .4096),
(2 bits wide - 2048), (4 bits wide . 1024), and 8 bits wide • 512). The codes
are single, b bit wide, error cojrectin, lammin ('t)des. For this
implenxentation, the 2-bit wide Iwie (2 bits wide 2048 word nienlor ('hip)
vields the best design in terms of number" of implementation costs, i.c., iMutidcr
Of ch ips.

5 Wenslev, .11 . , l,(vi , K. N. , (iteen, M.W .. Goldher, .1, and Neum i nn,
")esign of a FAult 'toerant .. irbowrne)igital (Ctimputer'", Vol. 1, Stanford
Research Insti ite, N74 179t09, I.. 2

TABLE 1I-1. REDUNDANCY FOR CORRECTING CYCLIC AND BYTE 3URSTS

CHECK DIGITS r

k b 2 b -4
BITS b I SC SF SC SF

4 3 5 4 7 6

8 4 5 5 7 6

12 5 6 5 8 7

16 5 6 6 8 7

24 5 6 6 9 7

28 6 7 6 9

56 6 7 7 10 8

60 6 8 7 10 8

64 7 8 7 10 9

128 8 9 8 11 10

256 9 10 9 12 10

512 10 11 10 13 11

1024 11 12 11 14 12

'I Ab,: 11-2. SUMMARY OF' DECODER COMPLEXITIES FOR C 'I, U IAP
DECODING OF GENERALIZEI) HAMMING CODES

MEMORY 4 OF 4I OF OF OF
CHIP "CHECKS" FRAMES CHIPS DECODER

CON CTGURATION FRAMES (TOTAL) TOTAL GATES

1 4096 5 29 29 1560

2 2048 3 15 30 936

4 1024 2 8 32 2496

8 512 2 5 40 19968

FtAME N1UMBER OF BITS PER WORD OF THE SELECTED MEMORY
) E VIC E

FRAUMES (T(OTAI,) NlIMbE'lR OF FRAMES (DEVICES) IN ONE ROW OF
MEMORY I)[VIE l'

These codes mask all single byte errors. To achieve diagnosis of the
errors, they should be augmented to provide detection. In some cases, this
will change the number of redundant check bits and the decoder complexity.
However, it is still believed that the optimum byte width is b = 2.

Another less elegant coding approach is to employ parity. Jack, et al6 ,
has compared various versions of parity with checksum and Hamming codes for
the purpose of achieving a self-checking 7 semiconductor memory. In this
paper, Jack et al, points out the importance of coverage, particularly with
respect to multiple errors in memory devices. Three different forms of
parity are considered. They are:

1) Single bit parity across the entire memory word.

2) Byte wide parity across 8-bit bytes using a single
parity bit per byte.

3) Chip-wide parity provides ono parity group for each bit
position in a chip for a group of bytes. For a 16-bit
data word implemented using 4-bit wide memory devices,
four parity check bits are required with four parity
checkers.

From (-overage considerations, tihey conviude that, on the average, chip-
wide parity and Hamming-like codes provide the best self-checking coverage
for data faults of any of the detection approaches investigated The are also)
unsurpassed in terms of worst -case possible failure modes. In present ing Ohe
results of the coverage iinalvsis. the y note that no exact ove rall c'ovr race
figures can be determined unless all the failure modes and the likelihoibod ti
their occurrence for the semiconductor devices are known. Their results for
a representative nemoiry requircment (A IK words . P; bils under cindit i)n
of a sinde fault are shown in Tahle 11-3. They observe that, for a one
microsecond cycle !inie me, okm v, there is no execution t ilie penaltv lor hip-
wide parity or alinni-ng code cho ckers because the overhead of 85 nanosecmdd I
for each word can he Mverlap)ped. The variation ill delay acro'ss the ar)o)''ach es
appears to be sufficientlIv small that delay times should no! he a mator factor al
this speed of memory operation (I in icrosec.n:l cyc ct le)

The results with respect to, the Hamming and chip-wide parity code
approaches are sumlmarized i Table H1-4. A comparison of the results shows
that:

6 Jack, L.A., Kinney, L.L. . B erg. R .O., "Compa rison of Alternative
Self-Checking Techniques in Semiconductor Memories", COMCON 77,
pg. 170-173.

7. A totally self-checking circuit is a circuit that is setf-testing for a
normal input set, N, and a non-trivial fault set, F, and fault secure
for N and a non -trivial fault set, F . A circuit is self-testing if, for
every fault from a l)resc rihed set, he circuit produces a non-c(ode space
output for at least one code input . A circuit is fault secure if, for
every fault from a prescribed set. the circuit never produces an inc orrect
code space output for code spaco inputs.

a) w2 a)GoV.
9Wli~r cV~ C V) CcU) c a) C

C C. r_ r. -
MI: NOL.1WJX3 CN C1 C*4 L o C

-4 00 00 r0r- 1. .. , r-r., .-

0~W~ 'D C'D cn) c ,f 0'- 0' 0' Do- 00 00

- - - -C' n - -l

u S.I
kH.OWj~v U4(ICIV C4 CZ

4
4 00~ 4 47 f4. *

4
~

0 -r -r -nL) ' ' c

C -7 -,1 0 C) aDzt 7

-0 CN . -l CC

C) U" L) :) C-'cM o - r4 c- - r

CZff)V C14 C. Lr U..7 0 ~ t-, 'D .Z n Cc X

0 11 -' 1 -*1 - - -x-

-r :- -:z 4 -z t4
CI - - -4

CC .7 CC C

(S[0LSIIO) - - .1 -J-.
N~ht~jfl~NO) - - X~ < X (~ . .-

'n0 c-

N

00 00
C -- --

CC 00 00
CC
w

z
0 iii

1jIn

0
C-) ~ ~

~L4

c~ Q~

~K..

I i. -~

z

£

:2

- .---- 4 -

.1K.
j.I
:4 ~) ~-,

I.-,, Cr ~

'I

-C

1) Both chip-wide and Hamming-like codes provide extremely
high coverage for massive on-chip failure modes.

2) Both Hamming-like codes and chip-wide parity achieve
100"i, error detection for either single device data or
address faults for chips no wider than 4 bits.

3) Hamming-like codes give better detection for multiple
device failures than simple parity schemes at an
increase in hardware.

4) Chip-wide parity requires fewer parity bits, less de-
tection circuitry, and has less interconnect complexity.

5) Neither approach permits errored data or instructions
to be passed to the CPU assuming single chip failure.

Of the above approaches, only Hamming-like codes have the potential
for error correcting capability. Techniques for designing error-free decoim,.
coupled with error correcting memory, have been described by Carter, et al 8 .
Single error correcting double error detecting (SEC DED) Hamming-like codes
have been used to protect memories where it is assumed that single failures
affect one bit of the word and two failures affect two bits of the retrieved
word. Early versions of this approach used "self-testable" SEC DED decoders
and encoders or translators for converting from bus parity code to memory
coding and vice versa. Here self-testing is understood to mean circuits that
test the proper functioning of every component during normal operation. The
decoding circuitry is dynamically tested while it performs its function of
correcting erroneous data without mistaking these errors for errors caused
by circuit faults and vice versa. The results of applying these techniques to
memories of 32. 64, and 128 bits are shown in Table 11-5 from Carter, et at.
The actual data hits are listed in the column labeled k and the redundant or
check hits required are shown under the r column (n is the sum of K - r).
The next column to the right, labeled "Conventional SEC I)ED to Byte Parity
Circuits", lists the circuits needed to translate from the SEC DED memory
code to the bus paritV code using conventional design techniques. The next
column to the ritght, labeled "Self-(hc king SEC DEl) to Byte Parity Circuits"-
gives the figures for the self-testing version (including translation). As seen
in the last coluin, only a small increase was required to achieve self -checkim
and this difference decreases with word length. Hence, translators can be a
source of large i mplementation cost and either should be avoided if possible or
should be minimized by choosing compatible codes to the extent possible.

8 Carter, W.C., lessep, D.C., and Wadia, A., "Error-Free Decoding for
Failure Tolerant Memories, FTC 71.

1/ lr

TABLE 11-5. COMPARISON OF CONVENTIONAL AND SELF-CHECKING
MEMORY IMPLEMENTATIONS

CONVENTIONAL SELF-CHECKING
SEC DED TO BYTE SEC DED TO BYTE

n k r PARITY CIRCUITS PARITY CIRCUITS INCREASE 1

32 26 6 1050 1130 7.4

64 57 7 2300 2380 3.5

128 120 8 4950 5000 1.1

n Total Number of Bits in Message Being Protected

k Total Number of Information Bits in Message Being Protected

r Total Number of "Check" Redundancy Bits In Message Being Protected

n k+r

This work has led to the development of techniques for designing self-
checking circuits not only for memories but for all computer functions, such
as the arithmetic and logic unit and control. In the case of memories, Carter
and McCarthy9 have extended these principles and have designed a fault -i olerant
memory based on a molified Hamming-like SEC DED code. The logic of this
memory is designed to be fault secure, self-testing, and is claimed to exhibit
good cost 'performance. The testing procedures are designed to detect faults
and prevent error accumulation. In the recovery process, single error
correction can be validated and most double errors caused by two faults
corrected.

Husband and Szygenda 10 have provided a detailed synthesis and anal.ysis
of a cost effective, ultrareliable, high speed, semiconductor memory system.
A 16K word by 64 bit memory system with a 250 nanosecond cycle time was
designed that corrected over 99, of all single faults. The approach is based
on a single error Hamming code, and support electronics that are designed
to cause all faults outside the memory proper to produce no more than one
bit error in any one memory word. The error-correcting circuits make up
less than 2% of the total circuitry and the increase in circuitry over the simple×x
system is less than 20%. Cycle time is not increased unless a fault occurs.
The implementation results are tabulated in Table 11-6 taken from Husband and
Szygenda's paper.

9 Carter, W.C., McCarthy, C.E., "Implementation of Experimental Fault
Tolerant Memory, IEEE Trans. on Computer, C-25, No. 6, ,June 1976.

10 Husband, E. W., Szygenda, S.A., "Synthesis and Analysis of a Cost Effec-
tive, Ultrareliable, High Speed, Semiconductor Me(morv System, IEE Tc on
Reliability, Vol. R-25, No. 3, August 1976.

C)~r

TABLE 11-6

COMPARISON OF 16K BY 64 BITS

SIMPLEX AND FAULT TOLERANT MEMORY SYSTEM

FAULT
SIMPLEX TOLERANT INCHEASE IN PERCENTAGE
SYSTEM SYSTEM DEVICES OF INCREASE

Memory 4096 4608 512 12.5

Address 48 128 80 167

Write Enable 6 16 10 167

Chip Select 10 31 21 210

Data In 8 9 1 12.5

Dati Out ,10 45 5 12.5

Erro LCrrtcttuj 96 96

Total 4208 4933 725 17.2

To summarize, the particular memory protection approach is a function

of the memory cycle time, the word len'lh, the protection used in the rest of

the system, and the size (capacitv) of the memory. Assuming a system
compatible memory cvcle tin and a mnemorv device selection based, primayiv,
on minimum cost the rcconimendd prolection approach as a function of
memory size is given in Table 11-7.

I *~ I

CLI)

C) ~
C) ~e-~
.~4 Ofl

~

p -~

z

<I 2

U

o
U

C-
t7' -

0 -T~ 'V

-' ~

-~ - - _

~
~

H ~
~P-~V ~ C)

~Z)~

z -i

0
U

0

0

c-I

-~- ~
C.)

HH

- I
2

I ~?

5. Coilt"L)

Until recent lv, replicat ion was the only known met hod of cont rol unit
ervror detect ion ., However , the nt roduct'ion of nieropro-ra mmed techniques

t t-lttvol unit desl gn has eased the pr oblem since the complex itV Of t he unit
iS IT111uced. Thi., la5i led it) tht studyv ofl itw -cost techniques for the deec Mt
Of cunt rol uni Cero vis. To .et d1 d~tesi gned a self-checking mic>pi ai
contrvol unin h i)] ed w~ nil ihiaittim of pa citvN checking, hit compare and i Ptfcc -

leaving._ ft his l sholwn !!at ' his deincan he made totallv sel--heo-ktnr

with respect tk s lliiiiLIe mullo It m)i z s3-howed that tot all v self-checkin4 (cOtl-
ceilt . could ht(tIpphli tl sviikhriontus sequential machines (Moore tvxlC Ln
adlditl it I') th,&tt~i '~ ILtt con)isidered e-arlier assumingt, thelit
cklc i'or ;nia 11,i ,, ii v zc,,uler 1 4 developedl approa 4 es fordeiilL
tot all v self-ceck inc a. svncihi ii~tmus sequential machines. Ho descrvibes the(

)Iit at Ioitl l et-iokn com11puter's including the microproorammedf con -

itkIl Wnill .b FIis O IS desi coed to halt upon the detection of a fault
11101 Iii I)(tin,' I'Iiiilt%1>1it) providle fault location information to withil aI

ew,,itoe levels. Ash j~lee aold Reddv 1t d (escri be ot ally self - ebleck ing checke-rs
bc ~ ~ ~ ~ 1 spiletd- it)l! o0t1hat ftti (cfil o tesign'ls and sepavai1(-lemties.

he trsptnhinc cliechcs cannot he realized .Fo)r Type I clccs(se

I~fd) 10i t.111% -('11 -checking' svstemis, hev detine, sufficient confdit ions
on se'parabile c'odes thait Insure that thc eta vkev can to realized.

'ot.1 at unxtd 1;, m t); id thle w twk is base'd mn a sn ~tt -t ei
stock -a /t-itrinirtel 1)1 the tct'kev . Cosqtt it is Ott opt)l

wit in I e ttpl I c t a It I In 4 th bI 1ke (' II - tIweve (. 1 v r a I -I level , 01 ef I i TII I
tion impleimentat ion, stich ais MS1 401' SSI, \voihl pit'talk mleet the -smincl ccv vQ
110 itI'. Such1 anIl approac0,W Iiwood Col"m1 A)lfIiet iflaOTV hlt - si i (C 1 i CsSc

cuant vol[units since tll(e\ ave usually imnileniented with) rilat ivelv lw-level
lilt eigrat Imul devices coiiila tied witlh littli -Speed , hich lv ut egiat ed men, iv
tICvitcf,(e',t- rfeti -tmilk nineli-N. (ROM) and poiliule ?ljh (,j ilfl,

IEEE 't'C-20(2). 197, p. 161-162.

13 M~., I. , '1)esig-n of Totally Self-Chiecking and Fail Satec SequeCnt ial
Ma clhines", P roc . Fourith Annual Ioterinatijonal Sv 011j)05i1m illo Fault
Tolerant Ciomput in, Tune 1974, 13g. 3- 19 - 3-24.

14 Ozguner, F. , "Design of Totally Self -Checking As 'vnchronous Sequential
Machines". Coordinated Science Laboi'atorv Report R -679, Univ. tof

Illinois, Mlay 1q75.

15 Ho, I).S. , -The T(esign of Totally Self -Checking Systems" , PhD Thesis,
Univ. of Illinois, 1976.

16 Reddyv, J . 1M. , Ashijalee, MI J ."On Tot ailly Self -Checking Checkers forl
Separable Codes", WEEE TC, Vol. C-26, No. 8, August 1977.

Perhaps more importantly, none of the coding approaches investigated
resulted in low-cost implementations. When all the factors were considered,
the implementation costs were in excess of duplication and introduce additional
delays in the control loop which, time-wise, were already the limiting path.

For these reasons, replication is recommended for the bit-slice micro-
processor control unit. For systems that require essentially uninterrupted
processing, a form of triplication is recommended. Assuming that the LRU
could be as large as the simplex control unit, augmented TMR would provide
sufficient error location resolution, so that resource costs would approximate
that of triplication plus the voters. Speed would be reduce only slightlv
due to the added delays of the voters.

Bit-slice based microprocessor systems that can tolerate "short " inter-
ruptions have the option of considering either replication or some form of
coding. However, even here, replication is favored because real-time error
masking of error correct ion codes is not needed and replication provides at
least one identical copy of the unfailed structure after the occurrence of
the error.

For monolithic microprocessors, the control unit is considered as a
part of the CPU and the recommendations made in the processor section applv.
Some form of TMR is recnmmended.

6. Buses

Bus protection depends on the buses and interface failure modes. Mili -

tary standards, such as MIL STD 1553A, and the environment strongly, affect
the bus protection approaches that can be considered for a particular applicati t n.
Tie source and sink of the information transmitted over the bus also strungly

affect the protection approach because if the code employed at either end of
the hus is different from that used by the bus, a code translator mav be rc.-
quired. If all three employ different coding schemes, two translatewrs ire
required. Depending on the code pair, the translator may be quiie c'nt)lex

and itself require protection. It, therefore, behooves the system desi,&cnh
to utilize as few differecnt codes throughout the svstem as possible. Wher,
different codes are required they should be selected to minimize the transhim
requirements, and vice versa if two-way communication is to be mailml m
across the bus.

For the applications considered here, where the systems are smon 11 .n
the number of devices is of tile order of 100 or less, the processor buses
should be short and the interface requirements should dominate. Thus, IL
problem can be viewed as just an extension of the design of protected lc.
For monolithic microprocessors, which are most likely to employ some Ve rs ,,
of TMR, the processor internal buses are protected by TMR when the functional
units, i.e., processor, memory, are viewed as one logic unit: the buses are
indistinguishable from other signal paths.

For bit -slice ni c roprocessors, the buses between the processor, meMorV.
and control can be viewed as indistinguishable for many applications. Thus.
the same considerations drive the bus protection problem as the functional
units and the same techniques can be employed. Since the control and processor

units will quic, likely be inipl,mented u.-in) slnme forilt of replication, lie
nature of the pr.>tonem will he oit(- of i' t iilii, between various forms of
dupli cat i on and i r ill ica t in The memo'v to lhe l control and pr cessor bres
problem is diff(rent I 1' _ nu)ll t-l' if re<Si)its Fil'st, aS)LiSt indicat(d, the
plotesso. and control will, mwl, st Ikel %, be protected b some ofrnl of
replication while le Ill(will, moiii tha st lik(, , be protected b sne o nven-
tional code, like Ilain nii. Second, th(numtber of buses can varV bet ween i.
and three, dcopndii) ,ou Owthet icr tih (oi iunicat ion is split between :in input ,)r
output bus andl. o." ,hetlwri- 11)h iit- is .1(2 %c (hit ed , funictin(JO bet ,(:t ddross
and data. Last lv, t it I rj:Illt l t of the 'oot vol signals in the recelvlll , llis
can vary between ,hlr kin, whete r the sirnal has been correctllv t v'isotinted
to whether the 11na 1 T o r t' . ''(e yod and l't iirnim a signal It) t lie
C oltl i t'r C(1 i i tid w it Ig I liet, i s I A t lie cIlt vol I ransm is Sil m -

error non error

7. otck

The rlfii to C ' in .ini cistibulion ut ti mi< signlis is noeded l
to ilnsu!rc A 'ui) il"'u ' itit t -'tIcllliioiS sequential ('irc iits ill sell-,tiaunosin,
procesSot's. i' ,, hi oiln or clock lines may he due to intercolnnect lo)l
failures or 1: It. iit' st.iurce of the sikiual. For erroirs prioduced by
malfunctions it i e (11 t i i mechanisms, errors can be c'lassified as either
catalotr)ophic. '\,Oiiw l! \'ltlt to a< s1tolk-<t! fauLlt oil he l ine, or variational
as in 21 I 'eqteni' , (iii11, . Cor e I i s fiiaiIOn iI has been eS(tttblishlei Iased
oil tile cir'uilt u:,o;l o mu!t' tle line. It is:

1) Discrete, charge 'is charge circuits

2) Retci ggerable niomtstable mulitivibrator circuits

3) Digital cll tti -" i t'cuii.

4) In! (gr:It, ci rctiti -

None of tihe ,e heiis (ian check the input for all possible errris withoult
resorting t) duplicat ion and each of the circuits is susceptible to undetect -
able internal faults. IUsas 17 describes a self-checking perioldic signal checker
as shown in Figlure 11-1. It uses the same hardware as a duplication scheme

using a ret riggeirable inonostable circuit, but it is self-testing and the duplicated
desion is not. Additionallv, this checker also detects duty cycle errors. Since
Ml and M2 are arran.ed to run 180o1 out-of-phase, the circuit detects uni-
di'ectionalI errors and tie Ivo i)nost.alies can be realized in a single
integ ral ed circuit package w ithout concern for failures affecting the common
power and ground distribution Io the individual circuits. It is recommended,
for effective error detection, Ihat the checker be wired to a memory element
or clocked niodulo following the last fanout branch. This permits the detection
of faults on any of the tanlut points in the wiring of the clock line.

17 Usas, A .M.vi. " ie I)et eciii t f Eroi'rs in leriodic S ignal s", Technical
Note :i45, Staiiord University, April 1974.

1YI

M I

IN PI IT

1.: It IHto It
INIIA I'o)k

.M ()STA BIJ:

M2

Figure 11-1. TotaUy Self-Checking Periodic Signal Checker

The error indicator is designed to complement the checker and provide visual
output for both fixed and momentary errors, as shown in Figure 11-2. It is not
self-testing but is fault secure with respect to all faults affecting only a single
flip-flop.

Other approaches utilize an array of identical oscillator modules to
proluce a number of phase-locked clock signals. A technique commonly used
is majority vote among 2f + 1 redundant signals, which produces a valid output
if the redundant inputs are suitably synchronized. Daly 8 shows that the
simple majority function is insufficient and that "gliches" or sliver pulses
can result because the output depends on the failed elements during part
of the clock period. He shows that by incorporating hysteresis as in-line

F ROM
(:IEl:('KI,; 1I

Figure 11-2. Fail Safe Error Indicator

18 Daly, W.M., "A Fault Tolerant Digital Clocking System", FTC 73,
pg. 17-22.

156

receivers, the difficultY can be l'iminat ed FiL gu 11-3 and 11-4 show tmv of

four identical elements of' a IaN 1 -tolerant clock s vst em~ mondul that will
tolerate the fai lure Of anyv one element using, conveni jonal TTL int egrat td
circuits. nhe Cir'Cuit rV of Figure 11-3 is desiI-ned to receive and vote ()n WI tu

clock O~j~S , , and D. It ,enerates thle ma iority funct ions and lpi duce.-
pulIS e outputs curio p-'Ionld in ihe falIlIingl and l eading edges of thI e ma proi

fut on . 7. 10 is aII iofloSt a.ble mulIt ivibrator i' tat (determnines t he H Iw I I'((ILI('

711I i.'- a one - ihV hatt ilshes a lower linmit on swit chintz t illt

A ci ItIi I\te 1 V(otiF) CMISlst., Of theC io"tzm(A1f~i I

1)1(1 A fll)-)liopj thait 1-s -t b1)h\ STA a nd reset b\ I)SITA . lbi(111-thy Jj)l
IS tOW (lk(Sl cc vOd ~ o1l clock swmylal 1111d drivi " tilt userI clrcultl- .

'11d ln:ijorlt', v1 iIO_ c';ti ilti-I5.Ft)oh~lto ulilil5 s ltil cir-

cltrv to~- ,,eut onk, of thc threo o)Scilatoi~s to dlevelop) tIel redunldant clod SI i-
nalts as- Shown 1 I ur 11 -5. Operton1 ()f the CIrc-uit is -,ich that it oiscitlator

A driving, ithe irujoritv ,,ites tlil.-. thet deftector caIuses its latu)) to -- I catusing '
th >itho'(() select the(neI. aVailableA os,-Clllitor . If H~ itt i's;

latch is i101t Set,1 t' j ovides the clock sitgnai for tie Systeml . IP h, ee.1'
latc h is also set, Owthn osc illator C is citected bv the crossover 5w 1 te h to di v e
tile majn rit va. 5 113 provid illL ex teril co-il t I of thle Li tcets S tcI t

(an be commlnanded 1,% th it inig s;YstI~lj for it('IS(l.> suchI is. (Xee Ss~ lequn
drift and h>um

lbIP' tlti 111W()el of the- S% steM is -,howil inl Figurte Il-C). It caii be
s eenl that, ultlther th'il thet con volitional rt'dundawl vo)ted(approateh 11ertI-6ai

whiere two 'u t I i tII a, ~ iellatois, a re I'ecjujrt'-d for success. on(Il, ot' oUt (if
threeC i, teLCilifed 1i ur i-61b). Although tfvi added circtiits 1i ll tjii osIliltor

chainl slichtilv illi. ies(thet fa1ire, rate, of the(A mid B3 oscillat ir (Ilailis, the
net effect is me -rca (d (el il eraiiso ofl the)I&e lesd m alf i n

()SCt11.tt,0' isIS (t5 I - for- succe'ssfu41 li'11.

For tie>lt, diaciosnlg, .tpplic-atioils . 1 colibilllation (I) the ,Ltdhl) c i-

dlundant o)scllttrs (Id ile ItaLilt -tlolerant receiver, sinll'~i toi that dtsc ritied
Figure, 11-4 ph- a il) ip~ l is lee011 (ilecI for. s vueh ron izatloll . Alierror

indicator c Iircuit sho ((1W ladded for fa ibid synch l'(in zer erri or loca tion i nd na -

tioll

/I.

- f-

C 'N

, ~r.

_ .5

S!2"2w C-
N

158

° • • -.. .. __

(9i]

F / <

LL

I - _ _.d- O s\ll to

------1 \ ,.---- I

ii I

., __

t II 1 \ -- -

II K -- . /11 I i -''

* I \ ,-- I uI I\ S ,idvI/;:drt(scliu

/.

OSC'LAT)/ILTE~OR/ MAJi ii:

OSCILL.ATOR(SL.c

160

1)i s ri hut i mI list

A A . I R- 7 i-- 18

5) AFEWC/ LSR 0 (M 1 :'ito-

San Antoni) 1\

I i

Ai, S I

Ol! (ll

A si

At~ il k Ai I t

I 1 1 i Ii

AIIN I

Is I i ml W.

kk ATE

LMED. ,

